Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dataset Descriptor for the AutoImplant Cranial Implant Design Challenge

  • Conference paper
  • First Online:
Towards the Automatization of Cranial Implant Design in Cranioplasty (AutoImplant 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12439))

Included in the following conference series:

Abstract

This data descriptor elaborates on a dataset that can be used for the development of automatic, data-driven approaches for cranial implant design, which is a challenging task in cranioplasty. The dataset includes 210 complete skulls as well as their corresponding defective skulls and the implants, resulting in a total of \(210 \times 3 =630\) files in NRRD format. We split the dataset into a training set and a test set, each containing 100 and 110 completes skulls as well as the associated defective skulls and implants, respectively. The complete skulls are segmented from the public head computed tomography (CT) collection CQ500 (http://headctstudy.qure.ai/dataset), which is licensed under CC BY-NC-SA 4.0, using thresholding (Hounsfield units \(\ge \) 150). On each complete skull, a synthetic defect, which resembles a real defect from craniotomy, is injected. In the test set, 100 skulls have similar defects to the training set, with respect to defect size, shape and position, while the last 10 skulls have distinct defects. The whole training set and the defective skulls in the test set are released to the participants of the MICCAI 2020 AutoImplant Challenge (https://autoimplant.grand-challenge.org/). The ground truth of the test set, i.e., the complete skulls and the implants are kept private by the organizers for a single blind an objective evaluation of the participant’s results.

https://autoimplant.grand-challenge.org/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gall, M., et al.: Cranial Defect Datasets, March 2019. https://figshare.com/articles/Cranial_Defect_Datasets/4659565

  2. Egger, J., et al.: Towards the automatization of cranial implant design in cranioplasty. Zenodo (2020). https://doi.org/10.5281/zenodo.3715953

  3. Li, J., Pepe, A., Gsaxner, C., Egger, J.: An online platform for automatic skull defect restoration and cranial implant design. arXiv, abs/2006.00980 (2020)

    Google Scholar 

  4. Morais, A., Egger, J., Alves, V.: Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder, pp. 151–160, April 2019

    Google Scholar 

  5. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  6. Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  7. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv: 1512.03012 (2015)

Download references

Acknowledgements

This work was supported by CAMed (COMET K-Project 871132), which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) and the Austrian Federal Ministry for Digital and Economic Affairs (BMDW) and the Styrian Business Promotion Agency (SFG). Furthermore, the Austrian Science Fund (FWF) KLI 678-B31: “enFaced: Virtual and Augmented Reality Training and Navigation Module for 3D-Printed Facial Defect Reconstructions” and the TU Graz LEAD Project “Mechanics, Modeling and Simulation of Aortic Dissection”. Finally, we want to thank the creator of the CQ500 data collection (http://headctstudy.qure.ai/dataset).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Egger, J. (2020). Dataset Descriptor for the AutoImplant Cranial Implant Design Challenge. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty. AutoImplant 2020. Lecture Notes in Computer Science(), vol 12439. Springer, Cham. https://doi.org/10.1007/978-3-030-64327-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64327-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64326-3

  • Online ISBN: 978-3-030-64327-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics