Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Graph Regularized Non-negative Matrix Factorization for Image Clustering

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2020 (ISNN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12557))

Included in the following conference series:

  • 1222 Accesses

Abstract

Non-negative matrix factorization and its variants have been utilized for computer vision and machine learning, however, they fail to achieve robust factorization when the dataset is corrupted by outliers and noise. In this paper, we propose a roust graph regularized non-negative matrix factorization method (RGRNMF) for image clustering. To improve the clustering effect on the image dataset contaminated by outliers and noise, we propose a weighted constraint on the noise matrix and impose manifold learning into the low-dimensional representation. Experimental results demonstrate that RGRNMF can achieve better clustering performances on the face dataset corrupted by Salt and Pepper noise and Contiguous Occlusion.

This work is supported by Foundation of Chongqing Municipal Key Laboratory of Institutions of Higher Education ([2017]3), Foundation of Chongqing Development and Reform Commission (2017[1007]), Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN201901218 and KJQN201901203), Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-bshX0101), Foundation of Chongqing Three Gorges University and National Science Foundation (NSF) grant #2011927 and DoD grant #W911NF1810475.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L., Xu, D., Tsang, I.W., Li, X.: Spectral embedded hashing for scalable image retrieval. IEEE Trans. Cybern. 44(7), 1180–1190 (2014)

    Article  Google Scholar 

  2. Datta, R., Joshi, D., Jia, L.I., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 35–94 (2008)

    Article  Google Scholar 

  3. Banerjee, B., Bovolo, F., Bhattacharya, A., Bruzzone, L., Chaudhuri, S., Mohan, B.K.: A new self-training-based unsupervised satellite image classification technique using cluster ensemble strategy. IEEE Geoence Remote. Sens. Lett. 12(4), 741–745 (2015)

    Article  Google Scholar 

  4. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  5. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  6. Hamza, A.B., Brady, D.J.: Reconstruction of reflectance spectra using robust nonnegative matrix factorization. IEEE Trans. Signal Process. 54(9), 3637–3642 (2006)

    Article  Google Scholar 

  7. Kong, D., Ding, C., Huang, H.: Robust nonnegative matrix factorization using L21-norm. In: Proceedings of the 20th ACM International Conference on Information And Knowledge Management, pp. 673–682 (2011)

    Google Scholar 

  8. Guan, N., Tao, D., Luo, Z., Shawetaylor, J.: MahNMF: Manhattan non-negative matrix factorization. J. Mach. Learn. Res. arXiv:1207.3438v1 (2012)

  9. Gao, H., Nie, F., Cai, W., Huang, H.: Robust capped norm nonnegative matrix factorization. In: ACM International on Conference on Information and Knowledge Management, pp. 871–880 (2015)

    Google Scholar 

  10. Du, L., Li, X., Shen, Y.: Robust nonnegative matrix factorization via half-quadratic minimization. In: IEEE International Conference on Data Mining, pp. 201–210 (2012)

    Google Scholar 

  11. Zhang, L., Chen, Z., Zheng, M., He, X.: Robust non-negative matrix factorization. Front. Electr. Electron. Eng. China 6(2), 192–200 (2015)

    Article  Google Scholar 

  12. Guan, N., Liu, T., Zhang, Y., Tao, D., Davis, L.: Truncated cauchy non-negative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 246–259 (2018)

    Article  Google Scholar 

  13. Casalino, G., Del Buon, N., Mencar, C.: Subtractive clustering for seeding non-negative matrix factorizations. Inf. Sci. 257, 369–387 (2014)

    Article  MathSciNet  Google Scholar 

  14. Wu, W., Jia, Y., Kwong, S., Hou, J.: Pairwise constraint propagation-induced symmetric nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6348–6361 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, H., Li, K., An, J., Zhang, W., Li, K.: An efficient manifold regularized sparse non-negative matrix factorization model for large-scale recommender systems on GPUs. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.060

    Article  Google Scholar 

  16. Liu, X., Wang, W., He, D., Jiao, P., Jin, D., Cannistraci, C.V.: Semi-supervised community detection based on non-negative matrix factorization with node popularity. Inf. Sci. 381, 304–321 (2017)

    Article  Google Scholar 

  17. Peng, X., Chen, D., Xu, D.: Hyperplane-based nonnegative matrix factorization with label information. Inf. Sci. 493, 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kang, Z., Pan, H., Hoi, S., Xu, Z.: Robust graph learning from noisy data. IEEE Trans. Cybern. (2019)

    Google Scholar 

  19. Li, Z., Tang, J., He, X.: Robust structured nonnegative matrix factorization for image representation. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1947–1960 (2018)

    Article  MathSciNet  Google Scholar 

  20. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  21. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans. Knowl. Data Eng. 17(12), 1624–1637 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, X., Zhang, K., Li, J., Xiong, J., Zhang, N. (2020). Robust Graph Regularized Non-negative Matrix Factorization for Image Clustering. In: Han, M., Qin, S., Zhang, N. (eds) Advances in Neural Networks – ISNN 2020. ISNN 2020. Lecture Notes in Computer Science(), vol 12557. Springer, Cham. https://doi.org/10.1007/978-3-030-64221-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64221-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64220-4

  • Online ISBN: 978-3-030-64221-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics