Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Method of Advertising on Online Social Networks

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2020 (ISNN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12557))

Included in the following conference series:

Abstract

How to advertise in online social networks is a hot and open research topic. In short, the main goal is to post the advertisement on a few of most influential users’ profiles to spread the advertising information to the potential suitable recipients. Typical research works about this topic are limitedly involved with two aspects: one is Spreading Maximization problem and the other is Centrality measures. The Spreading Maximization is proven to be an NP-hard problem, which means the corresponding method is mostly inefficient to exactly find the most influential spreaders. Second, traditional centrality measures, such as degree centrality, closeness centrality etc., roughly take the geometric information (degree or distance) to calculate the potentially most influential users, rather than considering online users’ personal interests or preference which are more likely to determine the set of people whether read/accept the advertising contents or not. In this paper, we put closed-related labels for each individual’s profile in the online social network and assign particularly set-up scores to these attribute labels. Based on these labels, we apply the weighted k-shell decomposition method to identify the core users in the networks, which is also regarded as the most influential users in this paper. The experimental results show that the proposed method is sufficient to identify the most influential users in some artificial networks. More importantly, the proposed method shows good discrimination degree of influence ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, G.: Marketing: An Introduction. Pearson Education, New York (2009)

    Google Scholar 

  2. Hays, L.: Technology: Using Computers to Divine Who Might Buy a Gas Grill. Wall Street Journal, New York (1994)

    Google Scholar 

  3. Sun, F., Shi, Y., Wang, W.: Content-based recommendation system based on vague sets, 294–297. IHMSC (2013)

    Google Scholar 

  4. Fang, P., Zheng, S.: A research on fuzzy formal concept analysis based collaborative filtering recommendation system. KAM, 352–355 (2009)

    Google Scholar 

  5. Domingos, P., Richardson, M.: Mining the network value of customers. ACM SIGKDD 57–66 (2001)

    Google Scholar 

  6. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. ACM SIGKDD, 61–70 (2002)

    Google Scholar 

  7. Chen, D., Lv, L., Shang, M., Zhang, Y., Zhou, T.: Identifying influential nodes in complex networks. Phys. A 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  8. Jordán, F., Benedek, Z., Podani, J.: Quantifying positional importance in food webs: a comparison of centrality indices. Ecol. Model. 205(1–2), 270–275 (2007)

    Article  Google Scholar 

  9. Kolaczyk, E.D., Chua, D.B., Barthlemy, M.: Group betweenness and co-betweenness: inter-related notions of coalition centrality. Soc. Net. 31(3), 190–203 (2009)

    Article  Google Scholar 

  10. Wang, F., Antipova, A., Porta, S.: Street centrality and land use intensity in Baton Rouge, Louisiana. J. Transp. Geogr. 19(2), 285–293 (2011)

    Article  Google Scholar 

  11. Zhang, H., Fiszman, M., Shin, D., et al.: Degree centrality for semantic abstraction summarization of therapeutic studies. J. Biomed. Inform. 44(5), 830–838 (2011)

    Article  Google Scholar 

  12. Linyuan, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 046122 (2009)

    Google Scholar 

  13. Wang, J., Rong, L.: Similarity index based on the information of neighbor nodes for link prediction of complex network. Mod. Phys. Lett. B 27(06), 1350039 (2013)

    Article  Google Scholar 

  14. Lü, L., Zhou, T.: Link prediction in weighted networks: the role of weak ties. Europhys. Lett. 89(1), 18001 (2010)

    Article  Google Scholar 

  15. Pathak, P.H., Dutta, R.: Centrality-based power control for hot-spot mitigation in multi-hop wireless networks. Comput. Commun. 35(9), 1074–1085 (2012)

    Article  Google Scholar 

  16. Kitsak, M., Gallos, L.K., Havlin, S., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  17. Fan, W.L., Liu, Z.G., Hu, P.: A high robustness and low cost cascading failure model based on node importance in complex networks. Mod. Phys. Lett. B 28(02), 1450011 (2014)

    Article  Google Scholar 

  18. Zhang, Z.: Information entropy of diffusion processes on complex networks. Mod. Phys. Lett. 28(17), 1450141 (2014)

    Article  Google Scholar 

  19. Wei, D., Deng, X., Zhang, X., et al.: Identifying influential nodes in weighted networks based on evidence theory. Phys. A 392(10), 2564–2575 (2013)

    Article  Google Scholar 

  20. Nicosia, V., Criado, R., Romance, M., et al.: Controlling centrality in complex networks. Sci. Rep. 2, 218–223 (2012)

    Article  Google Scholar 

  21. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Net. 32(3), 245–251 (2010)

    Article  Google Scholar 

  22. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Net. 1(3), 215–239 (1978)

    Article  Google Scholar 

  23. Bonacich, P., Lloyd, P.: Calculating status with negative relations. Soc. Net. 26(4), 331–338 (2004)

    Article  Google Scholar 

  24. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  25. Estrada, E., Rodrguez-Velzquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)

    Google Scholar 

  26. Brin, S., Page, L.: The pagerank citation ranking: bringing order to the web. Comput. Netw. 107–117 (1998)

    Google Scholar 

  27. Lv, L., Zhou, T.: Leaders in social networks, the delicious case. PloS ONE 6(6), e21202 (2011)

    Google Scholar 

  28. Newman, M.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)

    Google Scholar 

  29. Newman, M.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)

    Article  Google Scholar 

  30. Chu, X., Zhang, Z., Guan, J., et al.: Epidemic spreading with nonlinear infectivity in weighted scale-free networks. Phys. A 390(3), 471–481 (2009)

    Article  Google Scholar 

  31. Garas, A., Schweitzer, F., Havlin, S.: AK-shell decomposition method for weighted networks. New Phys. 14(8), 083030 (2012)

    Article  Google Scholar 

  32. Zhou, T., Liu, J.G., Bai, W.J., et al.: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E 74(5), 056109 (2006)

    Article  Google Scholar 

  33. Yan, G., Zhou, T., Wang, J., et al.: Epidemic spread in weighted scale-free networks. Chin. Phys. Lett. 22(2), 510–513 (2005)

    Article  Google Scholar 

  34. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, X., Liu, H., Dai, X., Xiong, J., Zhang, N. (2020). An Efficient Method of Advertising on Online Social Networks. In: Han, M., Qin, S., Zhang, N. (eds) Advances in Neural Networks – ISNN 2020. ISNN 2020. Lecture Notes in Computer Science(), vol 12557. Springer, Cham. https://doi.org/10.1007/978-3-030-64221-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64221-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64220-4

  • Online ISBN: 978-3-030-64221-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics