Nothing Special   »   [go: up one dir, main page]

Skip to main content

Composition of Kernel and Acquisition Functions for High Dimensional Bayesian Optimization

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2020)

Abstract

Bayesian Optimization has become the reference method for the global optimization of black box, expensive and possibly noisy functions. Bayesian Optimization learns a probabilistic model about the objective function, usually a Gaussian Process, and builds, depending on its mean and variance, an acquisition function whose optimizer yields the new evaluation point, leading to update the probabilistic surrogate model. Despite its sample efficiency, Bayesian Optimization does not scale well with the dimensions of the problem. Moreover, the optimization of the acquisition function has received less attention because its computational cost is usually considered negligible compared to that of the evaluation of the objective function: its efficient optimization is also inhibited, particularly in high dimensional problems, by multiple extrema and “flat” regions. In this paper we leverage the additivity – aka separability – of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization in lower dimensional subspaces. This approach makes more efficient both the learning/updating of the probabilistic surrogate model and the optimization of the acquisition function. Experimental results are presented for a standard test function and a real-life application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frazier., P.I.: Bayesian optimization. In: INFORMS TutORials in Operations Research, pp. 255–278 (2018)

    Google Scholar 

  2. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

    Book  MATH  Google Scholar 

  3. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metal. Min. Soc. South Africa 52, 119–139 (1951)

    Google Scholar 

  4. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

    Article  Google Scholar 

  5. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques IFIP Technical Conference. LNCS, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/978-3-662-38527-2_55

    Chapter  Google Scholar 

  6. Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-74740-8

    Book  MATH  Google Scholar 

  7. Gramacy, R.B., Lee, H.K.M., Holmes, C., Osborne, M.: Optimization under unknown constraints. Bayesian Stat. 9, 229 (2012)

    Google Scholar 

  8. Candelieri, A., Archetti, F.: Sequential model based optimization with black-box constraints: feasibility determination via machine learning. In: AIP Conference Proceedings, vol. 2070, no. 1, p. 020010. AIP Publishing LLC, February 2019

    Google Scholar 

  9. Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for Bayesian Optimization with unknown constraints. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37 (2015)

    Google Scholar 

  10. Candelieri, A: Sequential model based optimization of partially defined functions under unknown constraints. J. Global Optim. 1–23 (2019)

    Google Scholar 

  11. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning-Methods, Systems, Challenges. Automated Machine Learning. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  12. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Candelieri, A., Archetti, F.: Global optimization in machine learning: the design of a predictive analytics application. Soft. Comput. 23(9), 2969–2977 (2018). https://doi.org/10.1007/s00500-018-3597-8

    Article  Google Scholar 

  14. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Feitas, N.: Bayesian optimization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 55, 361–387 (2016)

    Article  MathSciNet  Google Scholar 

  15. Duvenaud, D.K., Nickisch, H., Rasmussen, C.E.: Additive Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 226–234 (2011)

    Google Scholar 

  16. Duvenaud, D., Lloyd, J.R., Grosse, R., Tenenbaum, J.B., Ghahramani, Z.: Structure discovery in nonparametric regression through compositional kernel search. arXiv preprint arXiv:1302.4922 (2013)

  17. Wilson, A., Adams, R.: Gaussian process kernels for pattern discovery and extrapolation. In: International Conference on Machine Learning, pp. 1067–1075, February 2013

    Google Scholar 

  18. Mutny, M., Krause, A.: Efficient high dimensional Bayesian optimization with additivity and quadrature Fourier features. In: Advances in Neural Information Processing Systems, pp. 9005–9016 (2018)

    Google Scholar 

  19. Zhigljavsky, A., Žilinskas, A.: Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems. Optim. Lett. 13(2), 249–259 (2019). https://doi.org/10.1007/s11590-018-1372-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)

    Article  MathSciNet  Google Scholar 

  21. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  22. Žilinskas, A., Calvin, J.: Bi-objective decision making in global optimization based on statistical models. J. Global Optim. 74(4), 599–609 (2018). https://doi.org/10.1007/s10898-018-0622-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Basu, K., Ghosh, S.: Analysis of Thompson sampling for Gaussian process optimization in the bandit setting. arXiv preprint arXiv:1705.06808 (2017)

  24. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008 (2013)

  25. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Global Optim. 71(1), 213–235 (2018). https://doi.org/10.1007/s10898-018-0641-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This study has been partially supported by the Italian project “PerFORM WATER 2030” – programme POR (Programma Operativo Regionale) FESR (Fondo Europeo di Sviluppo Regionale) 2014–2020, innovation call “Accordi per la Ricerca e l’Innovazione” (“Agreements for Research and Innovation”) of Regione Lombardia, (DGR N. 5245/2016 - AZIONE I.1.B.1.3 – ASSE I POR FESR 2014–2020) – CUP E46D17000120009.

We greatly acknowledge the DEMS Data Science Lab for supporting this work by providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Candelieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candelieri, A., Giordani, I., Perego, R., Archetti, F. (2020). Composition of Kernel and Acquisition Functions for High Dimensional Bayesian Optimization. In: Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2020. Lecture Notes in Computer Science(), vol 12096. Springer, Cham. https://doi.org/10.1007/978-3-030-53552-0_29

Download citation

Publish with us

Policies and ethics