Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Role of Artificial Neuron Networks in Intelligent Agriculture (Case Study: Greenhouse)

  • Chapter
  • First Online:
Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 912))

Abstract

The cultivation under cover of fruits, vegetables, and floral species has developed from the traditional greenhouse to the agro-industrial greenhouse which is currently known for its modernity and its high level of automation (heating, misting system, air conditioning, control, regulation and command, supervision computer, etc.). New techniques have emerged, including the use of devices to control and regulate climatic variables in the greenhouse (temperature, humidity, CO2 concentration, etc.). In addition, the use of artificial intelligence (AI) such as neural networks and/or fuzzy logic. Currently, the climate computer offers multiple services and makes it possible to solve problems relating to regulation, control, and commands. The main motivation in choosing an order by AI is to improve the performance of internal climate management, to move towards a control-command strategy to achieve a homogeneous calculation structure through a mathematical model of the process to be controlled, usable on the one hand for the synthesis of the controller and on the other hand by the simulation of the performances of the system. It is from this state, that begins this research work in this area include modelization an intelligent controller by the use of fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial Intelligence

ANN:

Artificial Neural Networks

CO2:

Carbon Dioxide

EAs:

Evolution Algorithms

FAO-UN:

Food and Agriculture Organization of the United Nations

FL:

Fuzzy Logic

GA:

Genetic Algorithms

H:

Humidity

IT:

Information Technology

LP:

Linear Programming

MIMO:

Multi-Input Multi-Output

NIAR:

National Institute for Agronomic Research

PDF:

Pseudo-Derivative Feedback

PE:

Polyethylene

PID:

Integral Controllers – Derivatives

PIP:

Proportional-Integral-Plus

PVC:

Polyvinyl Chloride

SISO:

Single-Input, Single-Output

T:

Temperature

References

  1. Z. Li, J. Wang, R. Higgs et al., Design of an intelligent management system for agricultural greenhouses based on the internet of things, in Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC (2017)

    Google Scholar 

  2. D. Piscia, P. Muñoz, C. Panadès, J.I. Montero, A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Comput. Electron. Agric. (2015). https://doi.org/10.1016/j.compag.2015.05.005

    Article  Google Scholar 

  3. E.J. van Henten, Greenhouse climate management : an optimal control approach. Agric. Eng. Phys. PE&RC (1994)

    Google Scholar 

  4. R. Ben Ali, S. Bouadila, A. Mami, Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated. Appl. Therm. Eng. 141, 798–810 (2018). https://doi.org/10.1016/J.APPLTHERMALENG.2018.06.014

    Article  Google Scholar 

  5. T. Morimoto, Y. Hashimoto, An intelligent control technique based on fuzzy controls, neural networks and genetic algorithms for greenhouse automation. IFAC Proc. 31, 61–66 (1998). https://doi.org/10.1016/S1474-6670(17)42098-2

    Article  Google Scholar 

  6. Y. Lu, Artificial intelligence: a survey on evolution, models, applications and future trends. J. Manag. Anal (2019)

    Google Scholar 

  7. J.C. van Dijk, P. Williams, The history of artificial intelligence. Expert. Syst. Audit. (1990)

    Google Scholar 

  8. A. Benko, C. Sik Lányi, History of artificial intelligence, in: Encyclopedia of Information Science and Technology, 2nd edn (2011)

    Google Scholar 

  9. B. van Ginneken, Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol. Phys. Technol. (2017)

    Google Scholar 

  10. J. Ring, in We Were Yahoo! : From Internet Pioneer to the Trillion Dollar Loss of Google and Facebook

    Google Scholar 

  11. M. Haenlein, A. Kaplan, A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif. Manage. Rev. (2019). https://doi.org/10.1177/0008125619864925

    Article  Google Scholar 

  12. S. Castellanos, Facebook AI Chief Yann LeCun Says Machines Are Decades Away From Matching the Human Brain—CIO Journal. Wall Str. J. (2017)

    Google Scholar 

  13. A. Wennberg, Food and Agriculture Organization of the United Nations, in Encyclopedia of Toxicology, 3rd edn (2014)

    Google Scholar 

  14. N. Radojević, D. Kostadinović, H. Vlajković, E. Veg, Microclimate control in greenhouses. FME Trans. (2014). https://doi.org/10.5937/fmet1402167R

    Article  Google Scholar 

  15. C. Duarte-Galvan, I. Torres-Pacheco, R.G. Guevara-Gonzalez et al., Review advantages and disadvantages of control theories applied in greenhouse climate control systems. Spanish J. Agric. Res. (2012). https://doi.org/10.5424/sjar/2012104-487-11

  16. N. Choab, A. Allouhi, A. El Maakoul et al., Review on greenhouse microclimate and application: design parameters, thermal modeling and simulation, climate controlling technologies. Sol. Energy 191, 109–137 (2019). https://doi.org/10.1016/j.solener.2019.08.042

    Article  Google Scholar 

  17. E. Iddio, L. Wang, Y. Thomas et al., Energy efficient operation and modeling for greenhouses: a literature review. Renew. Sustain. Energy Rev. 117, 109480 (2020). https://doi.org/10.1016/J.RSER.2019.109480

    Article  Google Scholar 

  18. G. Ted, in Greenhouse Management: A Guide to Greenhouse Technology and Operations. (Apex Publishers, USA, 2019)

    Google Scholar 

  19. Structure used as greenhouse roof frame, greenhouse roof frame, greenhouse framework, greenhouse, and greenhouse framework building method (2004)

    Google Scholar 

  20. G.-W. Bruns, Experiences on damages to roofing-materials and greenhouse construction. Acta Hortic 127–132. https://doi.org/10.17660/ActaHortic.1985.170.14

  21. Greenhouse construction (1910)

    Google Scholar 

  22. C. von Zabeltitz, Greenhouse Structures, Integrated Greenhouse Systems for Mild Climates (Springer, Berlin, 2011), pp. 59–135

    Chapter  Google Scholar 

  23. S. Fang, C. Jie, I. Hideaki, in MIMO Systems. Lecture Notes in Control and Information Sciences (2017)

    Google Scholar 

  24. K.H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. (2005). https://doi.org/10.1109/TCST.2005.847331

    Article  Google Scholar 

  25. Industrial Process Automation Systems (2015)

    Google Scholar 

  26. O. Blial, M. Ben Mamoun, R. Benaini, An overview on SDN architectures with multiple controllers. J. Comput. Netw. Commun. (2016)

    Google Scholar 

  27. E. Camponogara, D. Jia, B.H. Krogh, S. Talukdar, Distributed model predictive control. IEEE Control Syst. (2002). https://doi.org/10.1109/37.980246

    Article  Google Scholar 

  28. J.F. Cáceres, A.R. Kornblihtt, Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002). https://doi.org/10.1016/S0168-9525(01)02626-9

    Article  Google Scholar 

  29. D. Saba, B. Berbaoui, H.E. Degha, F.Z. Laallam, A generic optimization solution for hybrid energy systems based on agent coordination. in eds. by A.E. Hassanien, K. Shaalan, T. Gaber, M.F. Tolba Advances in Intelligent Systems and Computing (Springer, Cham, Cairo, Egypte, 2018) pp. 527–536

    Google Scholar 

  30. D. Saba, H.E. Degha, B. Berbaoui et al., Contribution to the modeling and simulation of multiagent systems for energy saving in the habitat, in Proceedings of the 2017 International Conference on Mathematics and Information Technology, ICMIT (2017)

    Google Scholar 

  31. D. Saba, F.Z. Laallam, B. Berbaoui, F.H. Abanda, An energy management approach in hybrid energy system based on agent’s coordination, in Advances in Intelligent Systems and Computing, 533rd edn., ed. by A. Hassanien, K. Shaalan, T. Gaber, A.T.M. Azar (Springer, Cham, Cairo, Egypte, 2017), pp. 299–309

    Google Scholar 

  32. D. Saba, F.Z. Laallam, A.E. Hadidi, B. Berbaoui, Contribution to the management of energy in the systems multi renewable sources with energy by the application of the multi agents systems “MAS”. Energy Procedia 74, 616–623 (2015). https://doi.org/10.1016/J.EGYPRO.2015.07.792

    Article  Google Scholar 

  33. D. Saba, F.Z. Laallam, H.E. Degha et al., Design and development of an intelligent ontology-based solution for energy management in the home, in Studies in Computational Intelligence, 801st edn., ed. by A.E. Hassanien (Springer, Cham, Switzerland, 2019), pp. 135–167

    Google Scholar 

  34. D. Saba, R. Maouedj, B. Berbaoui, Contribution to the development of an energy management solution in a green smart home (EMSGSH), in Proceedings of the 7th International Conference on Software Engineering and New TechnologiesICSENT 2018 (ACM Press, New York, NY, USA, 2018), pp. 1–7

    Google Scholar 

  35. D. Saba, H.E. Degha, B. Berbaoui, R. Maouedj, Development of an Ontology Based Solution for Energy Saving Through a Smart Home in the City of Adrar in Algeria (Springer, Cham, 2018), pp. 531–541

    Google Scholar 

  36. M. Pöller, S. Achilles, Aggregated wind park models for analyzing power system dynamics, in 4th International Workshop on Large-scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms (2003), pp. 1–10

    Google Scholar 

  37. D. Saba, F. Zohra Laallam, H. Belmili et al., Development of an ontology-based generic optimisation tool for the design of hybrid energy systems development of an ontology-based generic optimisation tool for the design of hybrid energy systems. Int. J. Comput. Appl. Technol. 55, 232–243 (2017). https://doi.org/10.1504/IJCAT.2017.084773

  38. D. Saba, F.Z. Laallam, A.E. Hadidi, B. Berbaoui, Optimization of a multi-source system with renewable energy based on ontology. Energy Procedia 74, 608–615 (2015). https://doi.org/10.1016/J.EGYPRO.2015.07.787

    Article  Google Scholar 

  39. V. Vanitha, P. Krishnan, R. Elakkiya, Collaborative optimization algorithm for learning path construction in E-learning. Comput. Electr. Eng. 77, 325–338 (2019). https://doi.org/10.1016/J.COMPELECENG.2019.06.016

    Article  Google Scholar 

  40. R.S. Epanchin-Niell, J.E. Wilen, Optimal spatial control of biological invasions. J. Environ. Econ. Manage. (2012). https://doi.org/10.1016/j.jeem.2011.10.003

    Article  Google Scholar 

  41. M. Vassell, O. Apperson, P. Calyam et al., Intelligent dashboard for augmented reality based incident command response co-ordination, in 2016 13th IEEE Annual Consumer Communications and Networking Conference, CCNC 2016 (2016)

    Google Scholar 

  42. K. Lammari, F. Bounaama, B. Draoui, Interior climate control of Mimo green house model using PI and IP controllers. ARPN J. Eng. Appl. Sci. 12 (2017)

    Google Scholar 

  43. C.J. Taylor, P. Leigh, L. Price et al., Proportional-integral-plus (PIP) control of ventilation rate in agricultural buildings. Control Eng. Pract. (2004). https://doi.org/10.1016/S0967-0661(03)00060-1

    Article  Google Scholar 

  44. M.-P. Raveneau, Effet des vitesses de dessiccation de la graine et des basses températures sur la germination du pois protéagineux

    Google Scholar 

  45. H.-J. Tantau, Greenhouse climate control using mathematical models. Acta Hortic 449–460 (1985). https://doi.org/10.17660/ActaHortic.1985.174.60

  46. M. Trejo-Perea, G. Herrera-Ruiz, J. Rios-Moreno et al., Greenhouse energy consumption prediction using neural networks models. Int. J. Agric. Biol. (2009)

    Google Scholar 

  47. I. González Pérez, A. José, C. Godoy, Neural networks-based models for greenhouse climate control. J. Automática 1–5 (2018)

    Google Scholar 

  48. E.K. Burke, M. Hyde, G. Kendall et al., A classification of hyper-heuristic approaches (2010)

    Google Scholar 

  49. Genetic algorithms in search, optimization, and machine learning. Choice Rev. (1989). https://doi.org/10.5860/choice.27-0936

  50. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. (2006). https://doi.org/10.1016/j.ress.2005.11.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Saba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadidi, A., Saba, D., Sahli, Y. (2021). The Role of Artificial Neuron Networks in Intelligent Agriculture (Case Study: Greenhouse). In: Hassanien, A., Bhatnagar, R., Darwish, A. (eds) Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications. Studies in Computational Intelligence, vol 912. Springer, Cham. https://doi.org/10.1007/978-3-030-51920-9_4

Download citation

Publish with us

Policies and ethics