Abstract
In this paper we propose a novel local shape descriptor based on Q-convexity histograms. We investigate three different variants: (1) focusing only on the background points, (2) examining all the points and (3) omitting the zero bin. We study the properties of the variants on a shape and on a texture dataset. In an illustrative example, we compare the classification accuracy of the introduced local descriptor to its global counterpart, and also to a variant of Local Binary Patterns which is similar to our descriptor in the sense that its histogram collects frequencies of local configurations. We show that our descriptor can reach in many cases higher classification accuracy than the others .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bay, H.B., Ess, A., Tuytelaars, T., Luc, V.G.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Brunetti, S., Balázs, P., Bodnár, P.: Extension of a one-dimensional convexity measure to two dimensions. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 105–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_9
Brunetti, S., Balázs, P., Bodnár, P., Szűcs, J.: A spatial convexity descriptor for object enlacement. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 330–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_26
Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theoret. Comput. Sci. 304(1–3), 35–57 (2003)
Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic projections in quartic time. Theoret. Comput. Sci. 406(1–2), 55–62 (2008)
Clement, M., Poulenard, A., Kurtz, C., Wendling, L.: Directional enlacement histograms for the description of complex spatial configurations between objects. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2366–2380 (2017)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005
Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)
Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for binary segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 258–271 (2016)
Kylberg, G., Sintorn, I.-M.: Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J. Image Video Process. 2013(1), 1–20 (2013). https://doi.org/10.1186/1687-5281-2013-17
Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1501–1512 (2006)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning, Stamford (2014)
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)
Varga, L.G., Nyl, L.G., Nagy, A., Balzs, P.: Local and global uncertainty in binary tomographic reconstruction. Comput. Vis. Image Understand. 129, 52–62 (2014), http://www.sciencedirect.com/science/article/pii/S1077314214001179; Special section: Advances in Discrete Geometry for Computer Imagery
Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 923–934 (2004)
Acknowledgments
Judit Szűcs was supported by the UNKP-19-3-SZTE-291 New National Excellence Program of the Ministry for Innovation and Technology, Hungary. This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no. EFOP-3.6.3-VEKOP16-2017-00002. This research was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Szűcs, J., Balázs, P. (2020). Local Q-Convexity Histograms for Shape Analysis. In: Lukić, T., Barneva, R., Brimkov, V., Čomić, L., Sladoje, N. (eds) Combinatorial Image Analysis. IWCIA 2020. Lecture Notes in Computer Science(), vol 12148. Springer, Cham. https://doi.org/10.1007/978-3-030-51002-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-51002-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51001-5
Online ISBN: 978-3-030-51002-2
eBook Packages: Computer ScienceComputer Science (R0)