Nothing Special   »   [go: up one dir, main page]

Skip to main content

SLAM-Based Multistate Tracking System for Mobile Human-Robot Interaction

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Abstract

The transfer from the utilization of simple robots for specifically predefined tasks to the integration of generalized autonomous systems poses a number of challenges for the collaboration between humans and robots. These include the independent orientation of robots in unknown environments and the intuitive interaction with human cooperation partners. We present a robust human-robot interaction (HRI) system that proactively searches for interaction partners and follows them in unknown real environments. For this purpose, an algorithm for simultaneous localization and mapping of the environment is integrated along with a dynamic system for determination of the partner’s willingness and the tracking of the partner’s localization. Interruptions of interactions are recovered by a separate recovery mode that is able to identify prior collaboration partners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/raulmur/ORB_SLAM2.

References

  1. Awais, M., Henrich, D.: Human-robot collaboration by intention recognition using probabilistic state machines. In: 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010). pp. 75–80, June 2010. https://doi.org/10.1109/RAAD.2010.5524605

  2. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

    Google Scholar 

  3. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  4. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans Pattern Anal. Mach. Intell. 29, 1052–1067 (2007)

    Article  Google Scholar 

  5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. CoRR abs/1607.02565 (2016). http://arxiv.org/abs/1607.02565

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  7. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)

    Google Scholar 

  8. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2100–2106, November 2013. https://doi.org/10.1109/IROS.2013.6696650

  9. Li, S., Zhang, L., Diao, X.: Deep-learning-based human intention prediction using RGB images and optical flow. J. Intell. Robot. Syst. 97(1), 95–107 (2019). https://doi.org/10.1007/s10846-019-01049-3

    Article  Google Scholar 

  10. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI), IJCAI, Acapulco, Mexico (2003)

    Google Scholar 

  11. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. CoRR abs/1502.00956 (2015)

    Google Scholar 

  12. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017). https://doi.org/10.1109/tro.2017.2705103

    Article  Google Scholar 

  13. Newcombe, R.A., Lovegrove, S., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV, pp. 2320–2327. IEEE (2011)

    Google Scholar 

  14. Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J., Berlles, J.: S-PTAM: stereo parallel tracking and mapping. Robot. Auton. Syst. 93, 27–42 (2017). https://doi.org/10.1016/j.robot.2017.03.019

    Article  Google Scholar 

  15. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). http://arxiv.org/abs/1804.02767. cite arxiv:1804.02767Comment. Technical report

  16. Svenstrup, M., Tranberg, S., Andersen, H.J., Bak, T.: Pose estimation and adaptive robot behaviour for human-robot interaction. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3571–3576, May 2009. https://doi.org/10.1109/ROBOT.2009.5152690

  17. Tistarelli, M., Grosso, E.: Human face analysis: from identity to emotion and intention recognition. In: Kumar, A., Zhang, D. (eds.) ICEB 2010. LNCS, vol. 6005, pp. 76–88. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12595-9_11

    Chapter  Google Scholar 

  18. Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1978–1990 (2011). https://doi.org/10.1109/TPAMI.2010.230

    Article  Google Scholar 

Download references

This work is funded by the Federal Ministry of Education and Research (BMBF) (RoboAssist no. 03ZZ0448G-L) within 3Dsensation alliance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thorsten Hempel or Ayoub Al-Hamadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hempel, T., Al-Hamadi, A. (2020). SLAM-Based Multistate Tracking System for Mobile Human-Robot Interaction. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12131. Springer, Cham. https://doi.org/10.1007/978-3-030-50347-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50347-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50346-8

  • Online ISBN: 978-3-030-50347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics