Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Big Data Conceptual Model to Improve Quality of Business Analytics

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2020)

Abstract

As big data becomes an important part of business analytics for gaining insights about business practices, the quality of big data is an essential factor impacting the outcomes of business analytics. Although this is quite challenging, conceptual modeling has much potential to solve it since the good quality of data comes from good quality of models. However, existing data models at a conceptual level have limitations to incorporate quality aspects into big data models. In this paper, we focus on the challenges cause by Variety of big data propose IRIS, a conceptual modeling framework for big data models which enables us to define three modeling quality notions – relevance, comprehensiveness, and relative priorities and incorporate such qualities into a big data model in a goal-oriented approach. Explored big data models based on the qualities are integrated with existing data grounded on three conventional organizational dimensions creating a virtual big data model. An empirical study has been conducted using the shipping decision process of a worldwide retail chain, to gain an initial understanding of the applicability of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14, 2 (2015). https://doi.org/10.5334/dsj-2015-002

    Article  Google Scholar 

  2. Taleb, I., Serhani, M.A., Dssouli, R.: Big data quality: a survey. In: IEEE International Congress on Big Data, pp. 166–173 (2018)

    Google Scholar 

  3. Grover, V., Chiang, R.H.L., Liang, T.P., Zhang, D.: Create strategic business value from big data analytics: a research framework. J. Manag. Inf. Syst. 35, 388–423 (2018)

    Article  Google Scholar 

  4. Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_1

    Chapter  Google Scholar 

  5. Storey, V.C., Song, I.Y.: Big data technologies and management: what conceptual modeling can do. Data Knowl. Eng. 108, 50–67 (2017)

    Article  Google Scholar 

  6. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992)

    Article  Google Scholar 

  7. Teorey, T.J., Yang, D., Fry, J.P.: A logical design methodology for relational databases using the extended entity-relationship model. ACM Comput. Surv. 18(2), 197–222 (1986)

    Article  Google Scholar 

  8. Chen, P.: The entity-relationship model – toward a unified view of data. ACM Trans. Database Syst. 1, 9–36 (1976)

    Article  Google Scholar 

  9. Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for apache cassandra. In: Proceedings of IEEE International Congress on Big Data, pp. 238–245 (2015)

    Google Scholar 

  10. Baazizi, M.A., Lahmar, H.B., Colazzo, D., Ghelli, G., Sartiani, C.: Schema inference for massive JSON datasets. In: Proceedings of Extending Database Technology (2017)

    Google Scholar 

  11. Jayapandian, C., Chen, C.-H., Dabir, A., Lhatoo, S., Zhang, G.-Q., Sahoo, S.S.: Domain ontology as conceptual model for big data management: application in biomedical informatics. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 144–157. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_12

    Chapter  Google Scholar 

  12. Caballero, I., Serrano, M., Piattini, M.: A data quality in use model for big data. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 65–74. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4_7

    Chapter  Google Scholar 

  13. Cristalli, E., Serra, F., Marotta, A.: Data quality evaluation in document oriented data stores. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11158, pp. 309–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01391-2_35

    Chapter  Google Scholar 

  14. Taleb, I., Dssouli, R., Serhani, M.A.: Big data pre-processing: a quality framework. In: Proceedings of the IEEE International Congress on Big Data, pp. 191–198 (2015)

    Google Scholar 

  15. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. 22(3), 183–236 (1990)

    Article  Google Scholar 

  16. Smith, J.M., Smith, D.C.P.: Database abstractions: aggregation and generalization. ACM Trans. Database Syst. (TODS) 2(2), 105–133 (1977)

    Article  Google Scholar 

  17. Nalchigar, S., Yu, E.: Business-driven data analytics: a conceptual modeling framework. Data Knowl. Eng. 117, 1–14 (2018)

    Article  Google Scholar 

  18. Park, G., Chung, L., Khan, L., Park, S.: A modeling framework for business process reengineering using big data analytics and a goal-orientation. In: Proceedings of the 11th International Conference on Research Challenges in Information Science (RCIS), pp. 21–32 (2017)

    Google Scholar 

  19. Park, G., Sugumaran, V., Park, S.: A reference model for big data analytics. In: Proceedings of the 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication, pp. 382–391 (2018)

    Google Scholar 

  20. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Manag. Inf. Syst. (MIS) 12(4), 5–33 (1996)

    Article  Google Scholar 

  21. Caro, F., et al.: Zara uses operations research to reengineer its global distribution process. INFORMS J. Appl. Anal. 40(1), 71–84 (2010)

    Article  Google Scholar 

  22. https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

  23. https://liliendahl.com/2019/06/13/data-modelling-and-data-quality/

  24. https://sites.google.com/site/irisforbigdata/

  25. Gosain, A.: Literature review of data model quality metrics of data warehouse. Procedia Comput. Sci. 48, 236–243 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, G. et al. (2020). A Big Data Conceptual Model to Improve Quality of Business Analytics. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds) Research Challenges in Information Science. RCIS 2020. Lecture Notes in Business Information Processing, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-50316-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50316-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50315-4

  • Online ISBN: 978-3-030-50316-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics