Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Hierarchical Semantic Correspondence and Gland Instance Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

The morphology statistics of colon glands is a key feature for pathologists to diagnose colorectal cancer. Current gland instance segmentation methods show good overall performances, but accurate segmentation of extremely deformed glands in highly malignant cases or some rare benign cases remains to be challenging . In this paper, we propose a hybrid model that learns hierarchical semantic feature matching from histological pairs in an attentive process, where both spatial details and morphological appearances can be well preserved and balanced, especially for the glands with severe deformation. A consistency loss function is also introduced to enforce simultaneous satisfaction of semantic correspondence and gland instance segmentation on the pixel-level. The novel proposed model is validated on two publicly available colon gland datasets GlaS and CRAG. The model successfully boosts the segmentation performances on greatly mutated or deformed cases, and outperforms the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aljanabi, M.A., Hussain, Z.M., Lu, S.F.: An entropy-histogram approach forimage similarity and face recognition. Mathematical Problems in Engineering 2018, (2018)

    Google Scholar 

  2. Awan, R., Sirinukunwattana, K., Epstein, D., Jefferyes, S., Qidwai, U., Aftab, Z., Mujeeb, I., Snead, D., Rajpoot, N.: Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Sci. Reports 7(1), 16852 (2017)

    Google Scholar 

  3. Bosman, F.T., Carneiro, F., Hruban, R.H., Theise, N.D., et al.: WHO classification of tumours of the digestive system. No. 4 En., World Health Organization, (2010)

    Google Scholar 

  4. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  5. Fleming, M., Ravula, S., Tatishchev, S.F., Wang, H.L.: Colorectal carcinoma: pathologic aspects. J. Gastrointestinal Oncol. 3(3), 153 (2012)

    Google Scholar 

  6. Graham, S., et al.: Mild-net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med. Image Anal. 52, 199–211 (2019)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1546–1555 (2018)

    Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  10. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 66–75 (2017)

    Google Scholar 

  11. Lee, J., Kim, D., Ponce, J., Ham, B.: Sfnet: learning object-aware semantic correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2278–2287 (2019)

    Google Scholar 

  12. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  13. Qu, H., Yan, Z., Riedlinger, G.M., De, S., Metaxas, D.N.: Improving nuclei/gland instance segmentation in histopathology images by full resolution neural network and spatial constrained loss. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 378–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_42

    Chapter  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sirinukunwattana, K., Pluim, J.P., Chen, H., Qi, X., Heng, P.A., Guo, Y.B., Wang, L.Y., Matuszewski, B.J., Bruni, E., Sanchez, U., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  16. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., Jemal, A.: Global cancer statistics, 2012. CA: A Cancer J. Clin. 65(2), 87–108 (2015)

    Google Scholar 

  17. Xie, Y., Lu, H., Zhang, J., Shen, C., Xia, Y.: Deep segmentation-emendation model for gland instance segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 469–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_52

    Chapter  Google Scholar 

  18. Xu, X., et al.: Quantization of fully convolutional networks for accurate biomedical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8300–8308. IEEE (2018)

    Google Scholar 

  19. Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., Eric, I., Chang, C.: Gland instance segmentation by deep multichannel side supervision. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 496–504. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_57

    Chapter  Google Scholar 

  20. Xu, Y., Li, Y., Wang, Y., Liu, M., Fan, Y., Lai, M., Eric, I., Chang, C.: Gland instance segmentation using deep multichannel neural networks. IEEE Trans. Biomed. Eng. 64(12), 2901–2912 (2017)

    Google Scholar 

  21. Yan, Z., Yang, X., Cheng, K.T.T.: A deep model with shape-preserving loss for gland instance segmentation. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 138–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_16

    Chapter  Google Scholar 

  22. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  23. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint, (2015) arXiv:1511.07122

  24. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  25. Zheng, H., et al.: Biomedical image segmentation via representative annotation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5901–5908 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Chung, A.C.S. (2020). Learning Hierarchical Semantic Correspondence and Gland Instance Segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics