Nothing Special   »   [go: up one dir, main page]

Skip to main content

Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Organization, W.H., et al.: Depression and Other Common Mental Disorders: Global Health Estimates. World Health Organization, Technical report (2017)

    Google Scholar 

  2. Otte, C., et al.: Major depressive disorder. Nat. Rev. Dis. Primers 2(1), 1–20 (2016)

    Article  Google Scholar 

  3. Gray, J.P., Müller, V.I., Eickhoff, S.B., Fox, P.T.: Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am. J. Psychiatry. 177(5), 422–434 (2020)

    Article  Google Scholar 

  4. Gao, S., Calhoun, V.D., Sui, J.: Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci. Ther. 24(11), 1037–1052 (2018)

    Article  Google Scholar 

  5. Sui, J., et al.: Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion. Nat. Commun. 9(1), 1–14 (2018)

    Article  Google Scholar 

  6. Jie, B., Liu, M., Shen, D.: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Med. Image Anal. 47, 81–94 (2018)

    Article  Google Scholar 

  7. Zhang, D., Huang, J., Jie, B., Du, J., Tu, L., Liu, M.: Ordinal pattern: a new descriptor for brain connectivity networks. IEEE Trans. Med. Imaging 37(7), 1711–1722 (2018)

    Article  Google Scholar 

  8. Li, G., et al.: Identification of abnormal circuit dynamics in major depressive disorder via multiscale neural modeling of resting-state fMRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 682–690. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_76

    Chapter  Google Scholar 

  9. Wang, M., Lian, C., Yao, D., Zhang, D., Liu, M., Shen, D.: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network. IEEE Transactions on Biomedical Engineering. IEEE (2019)

    Google Scholar 

  10. Jiao, Z., et al.: Dynamic routing capsule networks for mild cognitive impairment diagnosis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 620–628. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_68

    Chapter  Google Scholar 

  11. Yao, D., et al.: Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 70–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_9

    Chapter  Google Scholar 

  12. Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169, 431–442 (2018)

    Article  Google Scholar 

  13. Yan, C.G., et al.: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Nat. Acad. Sci. 116(18), 9078–9083 (2019)

    Article  Google Scholar 

  14. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinform. 14(3), 339–351 (2016)

    Article  Google Scholar 

  15. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., Rueckert, D.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Velivcković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  18. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12026–12035. IEEE (2019)

    Google Scholar 

  19. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intelligence. (2018)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by NIH grant (No. MH108560).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Sui , Dinggang Shen or Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, D., Sui, J., Yang, E., Yap, PT., Shen, D., Liu, M. (2020). Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics