Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Learning of Particle Image Velocimetry

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12321))

Included in the following conference series:

Abstract

Particle Image Velocimetry (PIV) is a classical flow estimation problem which is widely considered and utilised, especially as a diagnostic tool in experimental fluid dynamics and the remote sensing of environmental flows. Recently, the development of deep learning based methods has inspired new approaches to tackle the PIV problem. These supervised learning based methods are driven by large volumes of data with ground truth training information. However, it is difficult to collect reliable ground truth data in large-scale, real-world scenarios. Although synthetic datasets can be used as alternatives, the gap between the training set-ups and real-world scenarios limits applicability. We present here what we believe to be the first work which takes an unsupervised learning based approach to tackle PIV problems. The proposed approach is inspired by classic optical flow methods. Instead of using ground truth data, we make use of photometric loss between two consecutive image frames, consistency loss in bidirectional flow estimates and spatial smoothness loss to construct the total unsupervised loss function. The approach shows significant potential and advantages for fluid flow estimation. Results presented here demonstrate that our method outputs competitive results compared with classical PIV methods as well as supervised learning based methods for a broad PIV dataset, and even outperforms these existing approaches in some difficult flow cases. Codes and trained models are available at https://github.com/erizmr/UnLiteFlowNet-PIV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adrian, R., Westerweed, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  2. Hinton, G., Sejnowski, T.: Unsupervised Learning: Foundations of Neural Computation. MIT Press, Cambridge (1999)

    Book  Google Scholar 

  3. Westerweel, J.: Fundamentals of digital particle image velocimetry. Exp. Fluids 23(12), 1379–1392 (1997)

    Google Scholar 

  4. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  5. Ruhnau, P., Kohlberger, T., Schnorr, C., Nobach, H.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38(1), 21–32 (2005)

    Article  Google Scholar 

  6. Rabault, J., Kolaas, J., Jensen, A.: Performing particle image velocimetry using artificial neural networks: a proof-of-concept. Meas. Sci. Technol. 28(12), 125301 (2017)

    Article  Google Scholar 

  7. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  8. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2017)

    Google Scholar 

  9. Hui, T., Tang, X., Loy, C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 8981–8989 (2018)

    Google Scholar 

  10. Lee, Y., Yang, H., Yin, Z.: PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Exp. Fluids 58(12), 1–10 (2017). https://doi.org/10.1007/s00348-017-2456-1

    Article  Google Scholar 

  11. Cai, S., Zhou, S., Xu, C., Gao, Q.: Dense motion estimation of particle images via a convolutional neural network. Exp. Fluids 60(4), 1–16 (2019). https://doi.org/10.1007/s00348-019-2717-2

    Article  Google Scholar 

  12. Cai, S., Liang, J., Gao, Q., Xu, C., Wei, R.: Particle image velocimetry based on a deep learning motion estimator. IEEE Trans. Instrum. Meas. 69(6), 3538–3554 (2019)

    Article  Google Scholar 

  13. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1

    Chapter  Google Scholar 

  14. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: The Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  15. Sun, D., Roth, S., Black, M.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)

    Article  Google Scholar 

  16. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 2, pp. 2017–2025 (2015)

    Google Scholar 

  17. Zhang, C., Li, Z., Cai, R., Chao, H., Rui, Y.: As-rigid-as-possible stereo under second order smoothness priors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 112–126. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_8

    Chapter  Google Scholar 

  18. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  19. Li, Y., et al.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9(9), N31 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Chinese Scholarship Council and Imperial College London (a pump priming research award from the Energy Futures Lab, Data Science Institute and Gratham Institute – Climate Change and the Environment) that supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingrui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Piggott, M.D. (2020). Unsupervised Learning of Particle Image Velocimetry. In: Jagode, H., Anzt, H., Juckeland, G., Ltaief, H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science(), vol 12321. Springer, Cham. https://doi.org/10.1007/978-3-030-59851-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59851-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59850-1

  • Online ISBN: 978-3-030-59851-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics