Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structure Preserving Stain Normalization of Histopathology Images Using Self Supervised Semantic Guidance

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Although generative adversarial network (GAN) based style transfer is state of the art in histopathology color-stain normalization, they do not explicitly integrate structural information of tissues. We propose a self-supervised approach to incorporate semantic guidance into a GAN based stain normalization framework and preserve detailed structural information. Our method does not require manual segmentation maps which is a significant advantage over existing methods. We integrate semantic information at different layers between a pre-trained semantic network and the stain color normalization network. The proposed scheme outperforms other color normalization methods leading to better classification and segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glas segmentation challenge results. https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/results/. Accessed 30 Jan 2020

  2. Bai, W., et al.: Self-supervised learning for Cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  3. Bejnordi, B.E., Veta, M., van Diest, P.J., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak, J.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  4. BenTaieb, A., Hamarneh, G.: Adversarial stain transfer for histopathology image analysis. IEEE Trans. Med. Imaging 37(3), 792–802 (2018)

    Article  Google Scholar 

  5. Bozorgtabar, B., et al.: Informative sample generation using class aware generative adversarial networks for classification of chest Xrays. Comput. Vis. Image Underst. 184, 57–65 (2019)

    Google Scholar 

  6. Bándi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: The CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2019)

    Google Scholar 

  7. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: Proceedings of ICLR (2016)

    Google Scholar 

  8. Gadermayr, M., Appel, V., Klinkhammer, B.M., Boor, P., Merhof, D.: Which way round? a study on the performance of stain-translation for segmenting arbitrarily dyed histological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 165–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_19

    Chapter  Google Scholar 

  9. Guizilini, V., Hou, R., Li, J., Ambrus, R., Gaidon, A.: Semantically-guided representation learning for self-supervised monocular depth. In: Proceedings of ICLR, pp. 1–14 (2020)

    Google Scholar 

  10. Gupta, L., Klinkhammer, B.M., Boor, P., Merhof, D., Gadermayr, M.: GAN-based image enrichment in digital pathology boosts segmentation accuracy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 631–639. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_70

    Chapter  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2016)

    Google Scholar 

  12. Janowczyk, A., Basavanhally, A., Madabhushi, A.: Stain normalization using sparse autoencoders (STANOSA): application to digital pathology. Comput. Med. Imaging Graph 57, 50–61 (2017)

    Article  Google Scholar 

  13. Kazeminia, S., et al.: Gans for medical image analysis. In: arXiv preprint arXiv:1809.06222 (2018)

  14. Khan, A., Rajpoot, N., Treanor, D., Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: arXiv preprint arXiv:1412.6980 (2014)

  16. Lahiani, A., Navab, N., Albarqouni, S., Klaiman, E.: Perceptual embedding consistency for seamless reconstruction of Tilewise style transfer. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 568–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_63

    Chapter  Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Proceedings of Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1107–1110 (2009)

    Google Scholar 

  19. Mahapatra, D., Bozorgtabar, B., Hewavitharanage, S., Garnavi, R.: Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 382–390. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_44

    Chapter  Google Scholar 

  20. Mahapatra, D., Bozorgtabar, B., Shao, L.: Pathological retinal region segmentation from oct images using geometric relation based augmentation. In: Proceedings of IEEE CVPR, pp. 9611–9620 (2020)

    Google Scholar 

  21. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 580–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_65

    Chapter  Google Scholar 

  22. Mahapatra, D., Ge, Z.: Training data independent image registration using generative adversarial networks and domain adaptation. Pattern Recogn. 100, 1–14 (2020)

    Article  Google Scholar 

  23. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Ross, T., et al.: Gexploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int. J. Comput. Assist. Radiol. Surg. 13, 925–933 (2018)

    Article  Google Scholar 

  26. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: StainGAN: stain style transfer for digital histological images. arXiv preprint arXiv:1804.01601 (2018)

  27. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the GlaS challenge contest. Med. Imaging Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  28. Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., Kautz, J.: Pixel-adaptive convolutional neural networks. In: Proceedings of IEEE CVPR, pp. 11166–11175 (2019)

    Google Scholar 

  29. Tajbakhsh, N., et al.: Surrogate supervision for medical image analysis: effective deep learning from limited quantities of labeled data. In: Proceedings of IEEE ISBI, pp. 1251–1255 (2019)

    Google Scholar 

  30. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Google Scholar 

  31. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  32. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Imaging Anal. 58, 101552 (2019)

    Google Scholar 

  33. Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A.: Histopathology stain-color normalization using deep generative models. In: Proceedings of Medical Imaging with Deep Learning (2018)

    Google Scholar 

  34. Zhao, M., et al.: Craniomaxillofacial Bony structures segmentation from MRI with deep-supervision adversarial learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 720–727. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_82

    Chapter  Google Scholar 

  35. Zhou, N., Cai, D., Han, X., Yao, J.: Enhanced cycle-consistent generative adversarial network for color normalization of H&E stained images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 694–702. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_77

    Chapter  Google Scholar 

  36. Zhu, J., Park, T., Isola, P., Efros, A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: arXiv preprint arXiv:1703.10593 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwarikanath Mahapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahapatra, D., Bozorgtabar, B., Thiran, JP., Shao, L. (2020). Structure Preserving Stain Normalization of Histopathology Images Using Self Supervised Semantic Guidance. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics