Abstract
Although generative adversarial network (GAN) based style transfer is state of the art in histopathology color-stain normalization, they do not explicitly integrate structural information of tissues. We propose a self-supervised approach to incorporate semantic guidance into a GAN based stain normalization framework and preserve detailed structural information. Our method does not require manual segmentation maps which is a significant advantage over existing methods. We integrate semantic information at different layers between a pre-trained semantic network and the stain color normalization network. The proposed scheme outperforms other color normalization methods leading to better classification and segmentation performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Glas segmentation challenge results. https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/results/. Accessed 30 Jan 2020
Bai, W., et al.: Self-supervised learning for Cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60
Bejnordi, B.E., Veta, M., van Diest, P.J., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak, J.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)
BenTaieb, A., Hamarneh, G.: Adversarial stain transfer for histopathology image analysis. IEEE Trans. Med. Imaging 37(3), 792–802 (2018)
Bozorgtabar, B., et al.: Informative sample generation using class aware generative adversarial networks for classification of chest Xrays. Comput. Vis. Image Underst. 184, 57–65 (2019)
Bándi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: The CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2019)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: Proceedings of ICLR (2016)
Gadermayr, M., Appel, V., Klinkhammer, B.M., Boor, P., Merhof, D.: Which way round? a study on the performance of stain-translation for segmenting arbitrarily dyed histological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 165–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_19
Guizilini, V., Hou, R., Li, J., Ambrus, R., Gaidon, A.: Semantically-guided representation learning for self-supervised monocular depth. In: Proceedings of ICLR, pp. 1–14 (2020)
Gupta, L., Klinkhammer, B.M., Boor, P., Merhof, D., Gadermayr, M.: GAN-based image enrichment in digital pathology boosts segmentation accuracy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 631–639. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_70
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2016)
Janowczyk, A., Basavanhally, A., Madabhushi, A.: Stain normalization using sparse autoencoders (STANOSA): application to digital pathology. Comput. Med. Imaging Graph 57, 50–61 (2017)
Kazeminia, S., et al.: Gans for medical image analysis. In: arXiv preprint arXiv:1809.06222 (2018)
Khan, A., Rajpoot, N., Treanor, D., Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: arXiv preprint arXiv:1412.6980 (2014)
Lahiani, A., Navab, N., Albarqouni, S., Klaiman, E.: Perceptual embedding consistency for seamless reconstruction of Tilewise style transfer. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 568–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_63
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Proceedings of Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1107–1110 (2009)
Mahapatra, D., Bozorgtabar, B., Hewavitharanage, S., Garnavi, R.: Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 382–390. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_44
Mahapatra, D., Bozorgtabar, B., Shao, L.: Pathological retinal region segmentation from oct images using geometric relation based augmentation. In: Proceedings of IEEE CVPR, pp. 9611–9620 (2020)
Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 580–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_65
Mahapatra, D., Ge, Z.: Training data independent image registration using generative adversarial networks and domain adaptation. Pattern Recogn. 100, 1–14 (2020)
Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ross, T., et al.: Gexploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int. J. Comput. Assist. Radiol. Surg. 13, 925–933 (2018)
Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: StainGAN: stain style transfer for digital histological images. arXiv preprint arXiv:1804.01601 (2018)
Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the GlaS challenge contest. Med. Imaging Anal. 35, 489–502 (2017)
Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., Kautz, J.: Pixel-adaptive convolutional neural networks. In: Proceedings of IEEE CVPR, pp. 11166–11175 (2019)
Tajbakhsh, N., et al.: Surrogate supervision for medical image analysis: effective deep learning from limited quantities of labeled data. In: Proceedings of IEEE ISBI, pp. 1251–1255 (2019)
Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)
Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1
Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Imaging Anal. 58, 101552 (2019)
Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A.: Histopathology stain-color normalization using deep generative models. In: Proceedings of Medical Imaging with Deep Learning (2018)
Zhao, M., et al.: Craniomaxillofacial Bony structures segmentation from MRI with deep-supervision adversarial learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 720–727. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_82
Zhou, N., Cai, D., Han, X., Yao, J.: Enhanced cycle-consistent generative adversarial network for color normalization of H&E stained images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 694–702. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_77
Zhu, J., Park, T., Isola, P., Efros, A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: arXiv preprint arXiv:1703.10593 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mahapatra, D., Bozorgtabar, B., Thiran, JP., Shao, L. (2020). Structure Preserving Stain Normalization of Histopathology Images Using Self Supervised Semantic Guidance. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-59722-1_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59721-4
Online ISBN: 978-3-030-59722-1
eBook Packages: Computer ScienceComputer Science (R0)