Abstract
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs. This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies and convolutional image-to-image translation followed by beam search to label vertebral levels in a self-consistent manner. The method can be applied without modification to lumbar, cervical and thoracic-only scans across a range of different MR sequences. The resulting system achieves 98.1% detection rate and 96.5% identification rate on a challenging clinical dataset of whole spine scans and matches or exceeds the performance of previous systems of detecting and labelling vertebrae in lumbar-only scans. Finally, we demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aebi, M.: The adult scoliosis. Eur. Spine J. 14(10), 925–948 (2005)
Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8), 1676–1693 (2015)
Forsberg, D., Sjöblom, E., Sunshine, J.L.: Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data. J. Digit. Imaging 30(4), 406–412 (2017). https://doi.org/10.1007/s10278-017-9945-x
Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73
Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_33
Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: International Conference on Machine learning, ICML 2006 (2006)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning (2017)
Jamaludin, A., Kadir, T., Clark, E., Zisserman, A.: Predicting spine geometry and scoliosis from DXA scans. In: MICCAI Workshop: Computational Methods and Clinical Applications in Musculoskeletal Imaging (2019)
Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 41, 63–73 (2017)
Jamaludin, A., et al.: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur. Spine J. 26, 1374–1383 (2017)
Lootus, M., Kadir, T., Zisserman, A.: Vertebrae detection and labelling in lumbar MR images. In: Yao, J., Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 17, pp. 219–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07269-2_19
Lootus, M., Kadir, T., Zisserman, A.: Radiological grading of spinal MRI. In: MICCAI Workshop: Computational Methods and Clinical Applications for Spine Imaging (2014)
Lu, J.T., et al.: Deep spine: automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning. In: Machine Learning for Healthcare Conference (2018)
Ozturk, C., Karadereler, S., Ornek, I., Enercan, M., Ganiyusufoglu, K., Hamzaoglu, A.: The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Int. Orthop. 34(4), 543–546 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Scheidl, H., Fiel, S., Sablatnig, R.: Word beam search: a connectionist temporal classification decoding algorithm. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (2018)
Taylor, H.J., Harding, I., Hutchinson, J., Nelson, I., Blom, A., Tobias, J.H., Clark, E.M.: Identifying scoliosis in population-based cohorts: development and validation of a novel method based on total-body dual-energy X-ray absorptiometric scans. Calcif. Tissue Int. 92(6), 539–547 (2013)
Tins, B.J., Balain, B.: Incidence of numerical variants and transitional lumbosacral vertebrae on whole-spine MRI. Insights Imaging 7(2), 199–203 (2016). https://doi.org/10.1007/s13244-016-0468-7
Windsor, R., Jamaludin, A.: The ladder algorithm: finding repetitive structures in medical images by induction. In: IEEE International Symposium on Biomedical Imaging (2020)
Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50
Zhao, S., Wu, X., Chen, B., Li, S.: Automatic vertebrae recognition from arbitrary spine MRI images by a hierarchical self-calibration detection framework. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 316–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_35
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: arXiv preprint arXiv:1904.07850 (2019)
Zukić, D., Vlasák, A., Egger, J., Hořínek, D., Nimsky, C., Kolb, A.: Robust detection and segmentation for diagnosis of vertebral diseases using routine MR images. Compu. Graph. Forum 33(6), 190–204 (2014)
Acknowledgements
The authors would like to thank Dr. Sarim Ather for useful discussions on spinal anatomy and clinical approaches to diagnosing disease, as well as assistance labelling the data. Rhydian Windsor is supported by Cancer Research UK as part of the EPSRC CDT in Autonomous Intelligent Machines and Systems (EP/L015897/1). Amir Jamaludin is supported by EPSRC Programme Grant Seebibyte (EP/M013774/1). The Genodisc data was obtained during the EC FP7 project GENODISC (HEALTH-F2-2008-201626).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A. (2020). A Convolutional Approach to Vertebrae Detection and Labelling in Whole Spine MRI. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_69
Download citation
DOI: https://doi.org/10.1007/978-3-030-59725-2_69
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59724-5
Online ISBN: 978-3-030-59725-2
eBook Packages: Computer ScienceComputer Science (R0)