Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Convolutional Approach to Vertebrae Detection and Labelling in Whole Spine MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12266))

  • 8559 Accesses

Abstract

We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs. This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies and convolutional image-to-image translation followed by beam search to label vertebral levels in a self-consistent manner. The method can be applied without modification to lumbar, cervical and thoracic-only scans across a range of different MR sequences. The resulting system achieves 98.1% detection rate and 96.5% identification rate on a challenging clinical dataset of whole spine scans and matches or exceeds the performance of previous systems of detecting and labelling vertebrae in lumbar-only scans. Finally, we demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aebi, M.: The adult scoliosis. Eur. Spine J. 14(10), 925–948 (2005)

    Article  Google Scholar 

  2. Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8), 1676–1693 (2015)

    Article  Google Scholar 

  3. Forsberg, D., Sjöblom, E., Sunshine, J.L.: Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data. J. Digit. Imaging 30(4), 406–412 (2017). https://doi.org/10.1007/s10278-017-9945-x

    Article  Google Scholar 

  4. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73

    Chapter  Google Scholar 

  5. Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_33

    Chapter  Google Scholar 

  6. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: International Conference on Machine learning, ICML 2006 (2006)

    Google Scholar 

  7. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning (2017)

    Google Scholar 

  8. Jamaludin, A., Kadir, T., Clark, E., Zisserman, A.: Predicting spine geometry and scoliosis from DXA scans. In: MICCAI Workshop: Computational Methods and Clinical Applications in Musculoskeletal Imaging (2019)

    Google Scholar 

  9. Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 41, 63–73 (2017)

    Article  Google Scholar 

  10. Jamaludin, A., et al.: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur. Spine J. 26, 1374–1383 (2017)

    Article  Google Scholar 

  11. Lootus, M., Kadir, T., Zisserman, A.: Vertebrae detection and labelling in lumbar MR images. In: Yao, J., Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 17, pp. 219–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07269-2_19

    Chapter  Google Scholar 

  12. Lootus, M., Kadir, T., Zisserman, A.: Radiological grading of spinal MRI. In: MICCAI Workshop: Computational Methods and Clinical Applications for Spine Imaging (2014)

    Google Scholar 

  13. Lu, J.T., et al.: Deep spine: automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning. In: Machine Learning for Healthcare Conference (2018)

    Google Scholar 

  14. Ozturk, C., Karadereler, S., Ornek, I., Enercan, M., Ganiyusufoglu, K., Hamzaoglu, A.: The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Int. Orthop. 34(4), 543–546 (2010)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Scheidl, H., Fiel, S., Sablatnig, R.: Word beam search: a connectionist temporal classification decoding algorithm. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (2018)

    Google Scholar 

  17. Taylor, H.J., Harding, I., Hutchinson, J., Nelson, I., Blom, A., Tobias, J.H., Clark, E.M.: Identifying scoliosis in population-based cohorts: development and validation of a novel method based on total-body dual-energy X-ray absorptiometric scans. Calcif. Tissue Int. 92(6), 539–547 (2013)

    Article  Google Scholar 

  18. Tins, B.J., Balain, B.: Incidence of numerical variants and transitional lumbosacral vertebrae on whole-spine MRI. Insights Imaging 7(2), 199–203 (2016). https://doi.org/10.1007/s13244-016-0468-7

    Article  Google Scholar 

  19. Windsor, R., Jamaludin, A.: The ladder algorithm: finding repetitive structures in medical images by induction. In: IEEE International Symposium on Biomedical Imaging (2020)

    Google Scholar 

  20. Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50

    Chapter  Google Scholar 

  21. Zhao, S., Wu, X., Chen, B., Li, S.: Automatic vertebrae recognition from arbitrary spine MRI images by a hierarchical self-calibration detection framework. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 316–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_35

    Chapter  Google Scholar 

  22. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: arXiv preprint arXiv:1904.07850 (2019)

  23. Zukić, D., Vlasák, A., Egger, J., Hořínek, D., Nimsky, C., Kolb, A.: Robust detection and segmentation for diagnosis of vertebral diseases using routine MR images. Compu. Graph. Forum 33(6), 190–204 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sarim Ather for useful discussions on spinal anatomy and clinical approaches to diagnosing disease, as well as assistance labelling the data. Rhydian Windsor is supported by Cancer Research UK as part of the EPSRC CDT in Autonomous Intelligent Machines and Systems (EP/L015897/1). Amir Jamaludin is supported by EPSRC Programme Grant Seebibyte (EP/M013774/1). The Genodisc data was obtained during the EC FP7 project GENODISC (HEALTH-F2-2008-201626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhydian Windsor .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1473 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Windsor, R., Jamaludin, A., Kadir, T., Zisserman, A. (2020). A Convolutional Approach to Vertebrae Detection and Labelling in Whole Spine MRI. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics