Nothing Special   »   [go: up one dir, main page]

Skip to main content

Region Proposals for Saliency Map Refinement for Weakly-Supervised Disease Localisation and Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12266))

Abstract

The deployment of automated systems to diagnose diseases from medical images is challenged by the requirement to localise the diagnosed diseases to justify or explain the classification decision. This requirement is hard to fulfil because most of the training sets available to develop these systems only contain global annotations, making the localisation of diseases a weakly supervised approach. The main methods designed for weakly supervised disease classification and localisation rely on saliency or attention maps that are not specifically trained for localisation, or on region proposals that can not be refined to produce accurate detections. In this paper, we introduce a new model that combines region proposal and saliency detection to overcome both limitations for weakly supervised disease classification and localisation. Using the ChestX-ray14 data set, we show that our proposed model establishes the new state-of-the-art for weakly-supervised disease diagnosis and localisation. We make our code available at https://github.com/renato145/RpSalWeaklyDet.

Supported by Australian Research Council through grant DP180103232.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This practice follows the protocol of other methods  [5, 27] in the field.

References

  1. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846–2854 (2016)

    Google Scholar 

  2. Chen, D., et al.: Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit. Med. 2(1), 1–5 (2019). Number: 1 Publisher: Nature Publishing Group

    Google Scholar 

  3. Folio, L.R.: Chest Imaging: An Algorithmic Approach to Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1317-2

    Book  Google Scholar 

  4. Guan, Q., Huang, Y.: Multi-label chest X-ray image classification via category-wise residual attention learning. Pattern Recogn. Lett. 130, 259–266 (2018)

    Article  Google Scholar 

  5. Guan, Q., Huang, Y., Zhong, Z., Zheng, Z., Zheng, L., Yang, Y.: Thorax disease classification with attention guided convolutional neural network. Pattern Recogn. Lett. 131, 38–45 (2020)

    Article  Google Scholar 

  6. Gündel, S., Grbic, S., Georgescu, B., Liu, S., Maier, A., Comaniciu, D.: Learning to recognize abnormalities in chest X-rays with location-aware dense networks. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 757–765. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_88

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  9. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  10. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  11. Jang, E., Gu, S., Poole, B.: Categorical Reparameterization with Gumbel-Softmax (2017)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  13. Li, Z., et al.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018)

    Google Scholar 

  14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  16. Liu, J., Zhao, G., Fei, Y., Zhang, M., Wang, Y., Yu, Y.: Align, attend and locate: chest X-ray diagnosis via contrast induced attention network with limited supervision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10632–10641 (2019)

    Google Scholar 

  17. Ma, C., Wang, H., Hoi, S.C.H.: Multi-label thoracic disease image classification with cross-attention networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 730–738. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_81

    Chapter  Google Scholar 

  18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30, issue 1, p. 3 (2013)

    Google Scholar 

  19. Maicas, G., Snaauw, G., Bradley, A.P., Reid, I., Carneiro, G.: Model agnostic saliency for weakly supervised lesion detection from breast DCE-MRI. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1057–1060 (2019)

    Google Scholar 

  20. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free? - weakly-supervised learning with convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 685–694 (2015). https://doi.org/10.1109/CVPR.2015.7298668. ISSN 1063-6919, 1063-6919

  21. Rajpurkar, P., et al.: CheXnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  22. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  23. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  24. Tang, P., et al.: Weakly supervised region proposal network and object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 370–386. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_22

    Chapter  Google Scholar 

  25. Tang, Y., Wang, X., Harrison, A.P., Lu, L., Xiao, J., Summers, R.M.: Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 249–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_29

    Chapter  Google Scholar 

  26. Wang, H., Jia, H., Lu, L., Xia, Y.: Thorax-net: an attention regularized deep neural network for classification of thoracic diseases on chest radiography. IEEE J. Biomed. Health Inform. 24(2), 475–485 (2019)

    Article  Google Scholar 

  27. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  28. Wang, Y., et al.: Weakly supervised universal fracture detection in pelvic X-rays. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 459–467. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_51

    Chapter  Google Scholar 

  29. Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard, D., Lyman, K.: Learning to diagnose from scratch by exploiting dependencies among labels. arXiv preprint arXiv:1710.10501 (2017)

  30. Yao, L., Prosky, J., Poblenz, E., Covington, B., Lyman, K.: Weakly supervised medical diagnosis and localization from multiple resolutions. arXiv:1803.07703 [cs] (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Hermoza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 538 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hermoza, R., Maicas, G., Nascimento, J.C., Carneiro, G. (2020). Region Proposals for Saliency Map Refinement for Weakly-Supervised Disease Localisation and Classification. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics