Nothing Special   »   [go: up one dir, main page]

Skip to main content

Perfusion Quantification from Endoscopic Videos: Learning to Read Tumor Signatures

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Intra-operative (this work was partially supported by Disruptive Technologies Innovation Fund, Ireland, project code DTIF2018 240 CA) identification of malignant versus benign or healthy tissue is a major challenge in fluorescence guided cancer surgery. We propose a perfusion quantification method for computer-aided interpretation of subtle differences in dynamic perfusion patterns which can be used to distinguish between normal tissue and benign or malignant tumors intra-operatively by using multispectral endoscopic videos. The method exploits the fact that vasculature arising from cancer angiogenesis gives tumors differing perfusion patterns from the surrounding normal tissues. Experimental evaluation of our method on a cohort of colorectal cancer surgery endoscopic videos suggests that it discriminates between healthy, cancerous and benign tissues with 95% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Perfusion is the passage of fluid through the circulatory or lymphatic system to a capillary bed in tissue.

References

  1. Benson, R.C., Kues, H.A.: Fluorescence properties of indocyanine green as related to angiography. Phys. Med. Biol. 23(1), 159–163 (1978). https://doi.org/10.1088/0031-9155/23/1/017

    Article  Google Scholar 

  2. Boni, L., David, G., Dionigi, G., Rausei, S., Cassinotti, E., Fingerhut, A.: Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg. Endosc. 30(7), 2736–2742 (2015). https://doi.org/10.1007/s00464-015-4540-z

    Article  Google Scholar 

  3. Choi, M., Choi, K., et al.: Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature. J. Biomed. Optics 16(4), 046008 (2011). https://doi.org/10.1117/1.3562956

    Article  Google Scholar 

  4. De Palma, M., Biziato, D., Petrova, T.V.: Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17(8), 457 (2017). https://doi.org/10.1038/nrc.2017.51

    Article  Google Scholar 

  5. Diana, M., et al.: Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann. Surg. 259(4), 700–707 (2014). https://doi.org/10.1097/SLA.0b013e31828d4ab3

    Article  Google Scholar 

  6. Gurfinkel, M., et al.: Pharmacokinetics of icg and hpph-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem. Photobiol. 72(1), 94–102 (2000). https://doi.org/10.1562/0031-8655(2000)072

    Article  Google Scholar 

  7. Holt, D., et al.: Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLOS ONE. 9(7), e103342 (2014). https://doi.org/10.1371/journal.pone.0103342

    Article  Google Scholar 

  8. Huh, Y.J., et al.: Efficacy of assessing intraoperative bowel perfusion with near-infrared camera in laparoscopic gastric cancer surgery. J. Laparoendosc. Adv. Surg. Tech. 29(4), 476–483 (2019). https://doi.org/10.1089/lap.2018.0263

    Article  Google Scholar 

  9. Jayender, J., et al.: Statistical learning algorithm for in situ and invasive breast carcinoma segmentation. Comput. Med. Imaging Graph 37(4), 281–292 (2013). https://doi.org/10.1016/j.compmedimag.2013.04.003

    Article  Google Scholar 

  10. Jones, E., et al.: SciPy: open source scientific tools for Python, (2001) http://www.scipy.org/

  11. McKinney, S.M., et al.: International evaluation of an ai system for breast cancer screening. Nat. 577(7788), 89–94 (2020). https://doi.org/10.1038/s41586-019-1799-6

    Article  Google Scholar 

  12. Nishida, N., et al.: Angiogenesis in cancer. Vasc. Health Risk Manage. 2(3), 213 (2006). https://doi.org/10.2147/vhrm.2006.2.3.213

    Article  Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.5555/1953048.2078195

    Article  MathSciNet  MATH  Google Scholar 

  14. Phillips, C.L., et al.: Feedback Control Systems. Prentice Hall, 4 ed, (2000)

    Google Scholar 

  15. Schaafsma, B.E., et al.: The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J.Surg. Oncol. 104(3), 323–332 (2011). https://doi.org/10.1002/jso.21943

    Article  Google Scholar 

  16. Selka, F., et al.: Fluorescence-based enhanced reality for colorectal endoscopic surgery. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 114–123. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08554-8_12

    Chapter  Google Scholar 

  17. Shapcott, C.M., Rajpoot, N., Hewitt, K.: Deep learning with sampling for colon cancer histology images. Front. Bioeng. Biotech. 7, 52 (2019). https://doi.org/10.3389/fbioe.2019.00052

    Article  Google Scholar 

  18. Son, G.M., Kwon, M.S., Kim, Y., Kim, J., Kim, S.H., Lee, J.W.: Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg. Endosc. 33(5), 1640–1649 (2018). https://doi.org/10.1007/s00464-018-6439-y

    Article  Google Scholar 

  19. Veys, I., et al.: Icg-fluorescence imaging for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: a pilot study. J. Surg. Oncol. 117(2), 228–235 (2018). https://doi.org/10.1002/jso.24807

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Zhuk .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 556 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuk, S. et al. (2020). Perfusion Quantification from Endoscopic Videos: Learning to Read Tumor Signatures. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics