Nothing Special   »   [go: up one dir, main page]

Skip to main content

Supervised Learning for Human Action Recognition from Multiple Kinects

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2020 International Workshops (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12115))

Included in the following conference series:

  • 719 Accesses

Abstract

The research of Human Action Recognition (HAR) has made a lot of progress in recent years, and the research based on RGB images is the most extensive. However, there are two main shortcomings: the recognition accuracy is insufficient, and the time consumption of the algorithm is too large. In order to improve these issues our project attempts to optimize the algorithm based on the random forest algorithm by extracting the features of the human body 3D, trying to obtain more accurate human behavior recognition results, and can calculate the prediction results at a lower time cost. In this study, we used the 3D spatial coordinate data of multiple Kinect sensors to overcome these problems and make full use of each data feature. Then, we use the data obtained from multiple Kinects to get more accurate recognition results through post processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Griffiths, C., Rooney, C., Brock, A.: Leading causes of death in England and wales-how should we group causes. Health Stat. Q. 28(9), 6–7 (2005)

    Google Scholar 

  2. Nizam, Y., Haji Mohd, M.N., Abdul Jamil, M.M.: Classification of human fall from activities of daily life using joint measurements. J. Telecommun. Electron. Comput. Eng. (JTEC) 8(4), 145–149 (2016)

    Google Scholar 

  3. Bourke, A.K., O’brien, J.V., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 26(2), 194–199 (2007)

    Article  Google Scholar 

  4. Bagalà, F., et al.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 7(5), e37062 (2012)

    Article  Google Scholar 

  5. Yang, C.-C., Hsu, Y.-L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)

    Article  Google Scholar 

  6. Gioanni, L., Dartigues-Pallez, C., Lavirotte, S., Tigli, J.-Y.: Using random forest for opportunistic human activity recognition: a complete study on opportunity dataset. In: 11èmes journées francophones Mobilité et Ubiquité, Ubimob 2016, Lorient, France, 5 July 2016 (2016)

    Google Scholar 

  7. Mirmahboub, B., Samavi, S., Karimi, N., Shirani, S.: Automatic monocular system for human fall detection based on variations in silhouette area. IEEE Trans. Biomed. Eng. 60(2), 427–436 (2013)

    Article  Google Scholar 

  8. Feng, W., Liu, R., Zhu, M.: Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera. SIViP 8(6), 1129–1138 (2014)

    Article  Google Scholar 

  9. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 568–576 (2014)

    Google Scholar 

  10. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. CoRR, abs/1212.0402 (2012)

    Google Scholar 

  11. Aly Halim, A., Dartigues-Pallez, C., Precioso, F., Riveill, M., Benslimane, A., Ghoneim, S.A.: Human action recognition based on 3d skeleton part-based pose estimation and temporal multi-resolution analysis. In: 2016 IEEE International Conference on Image Processing, ICIP 2016, Phoenix, AZ, USA, 25–28 September 2016, pp. 3041–3045 (2016)

    Google Scholar 

  12. Lin, M., Lin, L., Liang, X., Wang, K., Cheng, H.: Recurrent 3D pose sequence machines. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 5543–5552 (2017)

    Google Scholar 

  13. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Article  Google Scholar 

  14. Sigal, L., Black, M.J., HumanEva: synchronized video and motion capture dataset for evaluation of articulated human motion., Technical report (2006)

    Google Scholar 

  15. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T.A., Serre, T.: HMDB: a large video database for human motion recognition. In: IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011, pp. 2556–2563 (2011)

    Google Scholar 

  16. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 4724–4733 (2017)

    Google Scholar 

  17. Thome, N., Miguet, S., Ambellouis, S.: A real-time, multiview fall detection system: a LHMM-based approach. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1522–1532 (2008)

    Article  Google Scholar 

  18. Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inform. 18(6), 1915–1922 (2014)

    Article  Google Scholar 

  19. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 1110–1118 (2015)

    Google Scholar 

  20. Wang, C., Wang, Y., Yuille, A.L.: Mining 3D key-pose-motifs for action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2639–2647 (2016)

    Google Scholar 

  21. Miranda, L., Vieira, T., Morera, D.M., Lewiner, T., Vieira, A.W., Campos, M.F.M.: Online gesture recognition from pose kernel learning and decision forests. Pattern Recogn. Lett. 39, 65–73 (2014)

    Article  Google Scholar 

  22. Kawatsu, C., Li, J., Chung, C.J.: Development of a fall detection system with microsoft kinect. In: Kim, J.H., Matson, E., Myung, H., Xu, P. (eds.) Robot Intelligence Technology and Applications 2012 Advances in Intelligent Systems and Computing, vol. 208, pp. 623–630. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-37374-9_5910.1007/978-3-642-37374-9_59

    Chapter  Google Scholar 

  23. Flores-Barranco, M.M., Ibarra-Mazano, M.-A., Cheng, I.: Accidental fall detection based on skeleton joint correlation and activity boundary. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9475, pp. 489–498. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27863-6_45

    Chapter  Google Scholar 

  24. Tran, T.-T.-H., Le, T.-L., Morel, J.: An analysis on human fall detection using skeleton from microsoft kinect. In: 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), pp. 484–489, July 2014

    Google Scholar 

  25. Mastorakis, G., Makris, D.: Fall detection system using kinect’s infrared sensor. J. Real-Time Image Proc. 9(4), 635–646 (2014)

    Article  Google Scholar 

  26. Kepski, M., Kwolek, B.: Fall detection using ceiling-mounted 3D depth camera. In: VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, vol. 2, Lisbon, Portugal, 5–8 January 2014, pp. 640–647 (2014)

    Google Scholar 

  27. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  28. Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)

    Article  Google Scholar 

  29. Wang, J., Nie, X., Xia, Y., Wu, Y., Zhu, S-C.: Cross-view action modeling, learning, and recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, 23–28 June 2014, pp. 2649–2656 (2014)

    Google Scholar 

  30. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012, pp. 1290–1297 (2012)

    Google Scholar 

  31. Tran, T.-H., Le, T.-L., Hoang, V.-N., Hai, V.: Continuous detection of human fall using multimodal features from kinect sensors in scalable environment. Comput. Methods Programs Biomed. 146, 151–165 (2017)

    Article  Google Scholar 

  32. Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 1297–1304. IEEE Computer Society, Washington (2011)

    Google Scholar 

  33. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  34. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297. IEEE (2012)

    Google Scholar 

  35. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC grants (No. 61532021 and 61972155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel Dartigues-Pallez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Dartigues-Pallez, C., Riveill, M. (2020). Supervised Learning for Human Action Recognition from Multiple Kinects. In: Nah, Y., Kim, C., Kim, SY., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020 International Workshops. DASFAA 2020. Lecture Notes in Computer Science(), vol 12115. Springer, Cham. https://doi.org/10.1007/978-3-030-59413-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59413-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59412-1

  • Online ISBN: 978-3-030-59413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics