Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Effective and Efficient Re-ranking Framework for Social Image Search

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

  • 2261 Accesses

Abstract

With the rapidly increasing popularity of social media websites, large numbers of images with user-annotated tags are uploaded by web users. Developing automatic techniques to retrieval such massive social images attracts much attention of researchers. The method of social image search returns top-k images according to several keywords input by users. However, the returned results by existing methods are usually irrelevant or lack of diversity, which cannot satisfy user’s veritable intention. In this paper, we propose an effective and efficient re-ranking framework for social image search, which can quickly and accurately return ranking results. We not only consider the consistency of visual content of images and semantic interpretations of tags, but also maximize the coverage of the user’s query demand. Specifically, we first build a social relationship graph by exploring the heterogeneous attribute information of social networks. For a given query, to ensure the effectiveness, we execute an efficient keyword search algorithm over the social relationship graph, and obtain top-k relevant candidate results. Moreover, we propose a novel re-ranking optimization strategy to refine the candidate results. Meanwhile, we develop an index to accelerate the optimization process, which ensures the efficiency of our framework. Extensive experimental conducts on real-world datasets demonstrate the effectiveness and efficiency of proposed re-ranking framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, Y., Cao, N., Gotz, D., Tan, Y., Keim, D.: A survey on visual analytics of social media data. IEEE Trans. Multimed. 18(11), 2135–2148 (2016)

    Article  Google Scholar 

  2. Chen, L., Xu, D., Tsang, W., Luo, D.: Tag-based web photo retrieval imapproved by batch mode re-tagging. In: CVPR, pp. 3440–3446 (2010)

    Google Scholar 

  3. Liu, D., Wang, M., Yang, L., Hua, X., Zhang, H.: Tag quality improvement for social images. In: ACM Multimedia, pp. 350–353 (2009)

    Google Scholar 

  4. Liu, D., Yan, D., Hua, S., Zhang, H.: Image retagging using collaborative tag propagation. IEEE Trans. Multimed. 13(4), 702–712 (2011)

    Article  Google Scholar 

  5. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: ACM Multimeida, pp. 461–470 (2010)

    Google Scholar 

  6. Yang, K., Hua, X., Wang, M., Zhang, H.: Tag tagging: towards more descriptive keywords of image content. IEEE Trans. Multimed. 13(4), 662–673 (2011)

    Article  Google Scholar 

  7. Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)

    Article  MathSciNet  Google Scholar 

  8. Seah, B., Bhowmick, S., Sun, A.: PRISM: concept-preserving social image search results summarization. PVLDB 8(12), 1868–1871 (2015)

    Google Scholar 

  9. Huang, F., Zhang, X., Li, Z., He, Y., Zhao, Z.: Learning social image embedding with deep multimodal attention networks. In: ACM Multimedia, pp. 460–468 (2017)

    Google Scholar 

  10. Dao, M., Minh, P., Kasem, A., Nazmudeen, M.: A context-aware late-fusion approach for disaster image retrieval from social media. In: ICMR, pp. 266–273 (2018)

    Google Scholar 

  11. Chen, Y., Tsai, Y., Li, C.: Query embedding learning for context-based social search. In: CIKM, pp. 2441–2444 (2018)

    Google Scholar 

  12. Wu, B., Jia, J., Yang, Y., Zhao, P., Tian, Q.: Inferring emotional tags from social images with user demographics. IEEE Trans. Multimed. 19(7), 1670–1684 (2017)

    Article  Google Scholar 

  13. Zhang, J., Yang, Y., Tian, Q., Liu, X.: Personalized social image recommendation method based on user-image-tag model. IEEE Trans. Multimed. 19(11), 2439–2449 (2017)

    Article  Google Scholar 

  14. Lu, D., Liu, X., Qian, X.: Tag-based image search by social re-ranking. IEEE Trans. Multimed. 18(8), 1628–1639 (2016)

    Article  Google Scholar 

  15. Tremeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. IEEE Trans. Image Process 9(4), 735–744 (2000)

    Article  Google Scholar 

  16. He, H., Singh, A.: Closure-tree: an index structure for graph queries. In: ICDE, pp. 38–49 (2006)

    Google Scholar 

  17. Zhuang, F., Mei, T., Steven, C., Hua, S.: Modeling social strength in social media community via kernel-based learning. In: ACM Multimedia, pp. 113–122 (2011)

    Google Scholar 

  18. Cortes, C., Mohri, M., Rostamizadeh, A.: Two-stage learning kernel algorithms. In: ICML, pp. 239–246 (2010)

    Google Scholar 

  19. Comanicu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  20. Lee, J., Hwang, S.: STRG-Index: spatio-temporal region graph indexing for large video databases. In: SIGMOD, pp: 718–729 (2005)

    Google Scholar 

  21. Yuan, J., Li, J., Zhang B.: Exploiting spatial context constraints for automatic image region annotation. In: ACM Multimedia, pp. 595–604 (2007)

    Google Scholar 

  22. Wang, Y., Yuan, Y., Ma, Y., Wang, G.: Time-dependent graphs: definitions, applications, and algorithms. Data Sci. Eng. 4(4), 352–366 (2019). https://doi.org/10.1007/s41019-019-00105-0

    Article  Google Scholar 

  23. Wang, M., Yang, K., Hua, X., Zhang, H.: Towards relevant and diverse search of social images. IEEE Trans. Multimed. 12(8), 829–842 (2010)

    Article  Google Scholar 

  24. Yang, K., Wang, M., Hua, X.S., Zhang, H.J.: Tag-based social image search: toward relevant and diverse results. In: Hoi, S., Luo, J., Boll, S., Xu, D., Jin, R., King, I. (eds.) Social Media Modeling and Computing, pp. 25–45. Springer, London (2011). https://doi.org/10.1007/978-0-85729-436-4_2

    Chapter  Google Scholar 

  25. Gao, Y., Wang, M., Luan, H., Shen, C.: Tag-based social image search with visual-text joint hypergraph learning. In: ACM Multimedia, pp. 1517–1520 (2017)

    Google Scholar 

  26. Zhang, J., Yang, Y., Tian, Q., Zhuo, L.: Personalized social image recommendation method based on user-image-tag model. IEEE Trans. Multimed. 19(11), 2439–2449 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Bo Lu is supported by the NSFC (Grant No. 61602085), Ye Yuan is supported by the NSFC (Grant No. 61932004, N181605012), Yurong Cheng is supported by the NSFC (Grant No. 61902023, U1811262) and the China Postdoctoral Science General Program Foundation (No. 2018M631358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, B., Yuan, Y., Cheng, Y., Wang, G., Duan, X. (2020). An Effective and Efficient Re-ranking Framework for Social Image Search. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics