Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learned Deep Radiomics for Survival Analysis with Attention

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2020)

Abstract

In the context of multiple myeloma, patient diagnosis and treatment planning involve the medical analysis of full-body Positron Emission Tomography (PET) images. There has been a growing interest in linking quantitative measurements extracted from PET images (radiomics) with statistical methods for survival analysis. Following very recent advances, we propose an end-to-end deep learning model that learns relevant features and predicts survival given the image of a lesion. We show the importance of dealing with the variable scale of the lesions, and propose to this end an attention strategy deployed both on the spatial and channels dimensions, which improves the model performance and interpretability. We show results for the progression-free survival prediction of multiple myeloma (MM) patients on a clinical dataset coming from two prospective studies. We also discuss the difficulties of adapting deep learning for survival analysis given the complexity of the task, the small lesion sizes, and PET low SNR (signal to noise ratio).

This work has been partially funded by the SIRIC ILIAD (INCa-DGOS-Inserm_12558), the LabEx IRON (ANR-11-LABX-0018-01) and by the European Regional Development Fund, the Pays de la Loire region on the Connect Talent scheme (MILCOM Project) and Nantes Métropole (Convention 2017-10470).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, X., Yao, J., Zhu, F., Huang, J.: WSISA: making survival prediction from whole slide histopathological images. In: CVPR, pp. 970–975 (2017)

    Google Scholar 

  2. Amyar, A., Ruan, S., Gardin, I., Chatelain, C., Decazes, P., Modzelewski, R.: 3-D RPET-NET: development of a 3-D pet imaging convolutional neural network for radiomics analysis and outcome prediction. IEEE Trans. Radiat. Plasma Med. Sci. 3(2), 225–231 (2019)

    Article  Google Scholar 

  3. Ching, T., Zhu, X., Garmire, L.X.: Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput. Biol. 14(4), 1–18 (2018). https://doi.org/10.1371/journal.pcbi.1006076

    Article  Google Scholar 

  4. Cook, G.J.R., Siddique, M., Taylor, B.P., Yip, C., Chicklore, S., Goh, V.: Radiomics in PET: principles and applications. Clin. Transl. Imaging 2(3), 269–276 (2014). https://doi.org/10.1007/s40336-014-0064-0

    Article  Google Scholar 

  5. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73–82 (1995). https://doi.org/10.1002/sim.4780140108

    Article  Google Scholar 

  6. Gensheimer, M.F., Narasimhan, B.: A scalable discrete-time survival model for neural networks. PeerJ 2019(1), 1–17 (2019). https://doi.org/10.7717/peerj.6257

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  8. Herent, P., et al.: Detection and characterization of MRI breast lesions using deep learning. Diagn. Interv. Imaging 100(4), 219–225 (2019). https://doi.org/10.1016/j.diii.2019.02.008

    Article  Google Scholar 

  9. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626 (2019). https://doi.org/10.1109/ISBI.2019.8759423

  10. Kaji, D.A., Zech, J.R., Kim, J.S., et al.: An attention based deep learning model of clinical events in the intensive care unit. PLoS ONE 14(2), e0211057 (2019). https://doi.org/10.1371/journal.pone.0211057

    Article  Google Scholar 

  11. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18, 24 (2018). https://doi.org/10.1186/s12874-018-0482-1

    Article  Google Scholar 

  12. Kleinbaum, D.G., Klein, M. (eds.): Survival Analysis: A Self-Learning Text. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-6646-9

    Book  MATH  Google Scholar 

  13. Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-10649-8

  14. Li, H., et al.: Deep convolutional neural networks for imaging data based survival analysis of rectal cancer. In: ISBI, April, vol. 2019, pp. 846–849 (2019). https://doi.org/10.1109/ISBI.2019.8759301

  15. Liu, Z., Sun, Q., Bai, H., Liang, C., Chen, Y., Li, Z.: 3D deep attention network for survival prediction from magnetic resonance images in glioblastoma. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1381–1384 (2019)

    Google Scholar 

  16. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018). https://doi.org/10.1073/pnas.1717139115. https://www.pnas.org/content/115/13/E2970

    Article  Google Scholar 

  17. Shboul, Z.A., Alam, M., Vidyaratne, L., Pei, L., Elbakary, M.I., Iftekharuddin, K.M.: Feature-guided deep radiomics for glioblastoma patient survival prediction. Front. Neurosci. 13, 966 (2019). https://doi.org/10.3389/fnins.2019.00966. https://www.frontiersin.org/article/10.3389/fnins.2019.00966

    Article  Google Scholar 

  18. Tong, Q., et al.: RIANet: recurrent interleaved attention network for cardiac MRI segmentation. Comput. Biol. Med. 109, 290–302 (2019). https://doi.org/10.1016/j.compbiomed.2019.04.042

    Article  Google Scholar 

  19. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  20. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis with pathological images. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), vol. 1, pp. 544–547. IEEE (2016). https://doi.org/10.1109/BIBM.2016.7822579

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludivine Morvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morvan, L. et al. (2020). Learned Deep Radiomics for Survival Analysis with Attention. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.d.C. (eds) Predictive Intelligence in Medicine. PRIME 2020. Lecture Notes in Computer Science(), vol 12329. Springer, Cham. https://doi.org/10.1007/978-3-030-59354-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59354-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59353-7

  • Online ISBN: 978-3-030-59354-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics