Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Task Scheduling via End-Edge-Cloud Cooperation in Vehicular Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12384))

Abstract

Service latency is one of the most crucial factors to be considered in vehicular networks, especially for safety-critical applications with complex tasks. This paper presents a three-layer service architecture in vehicular networks, including the cloud layer, the edge layer and the terminal layer, and the nodes on different layers have different capacities on task processing. Specifically, vehicles may generate a set of tasks, and each task may be composed of multiple subtasks, which may require different amount of computation and memory resources for processing, and the task is served only when all of its subtasks are completed. On this basis, we formulate an adaptive task scheduling (ATS) problem, with the objective of minimizing the overall service latency by best cooperating those heterogeneous nodes on the cloud, edge and terminal layers. Further, we propose a genetic algorithm GA_ATS to solve the problem. In particular, we design a real number vector representation for encoding solutions, a fitness function for solution evaluation, a set of crossover and mutation operations for offspring generation and a balanced greedy algorithm for fixing infeasible solutions. Finally, we build the simulation model and conduct a comprehensive performance evaluation. The result shows that our proposed algorithm can effectively improve the system performance in terms of minimizing service latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feng, J., Liu, Z., Wu, C., Ji, Y.: AVE: autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans. Veh. Technol. 66(12), 10660–10675 (2017)

    Article  Google Scholar 

  2. Dai, P., Liu, K., Zhuge, Q., Sha, E.H.M., Lee, V.C.S., Son, S.H.: Quality-of-experience-oriented autonomous intersection control in vehicular networks. IEEE Trans. Intell. Transp. Syst. 17(7), 1956–1967 (2016)

    Article  Google Scholar 

  3. Liu, K., Chan, E., Lee, V., Kapitanova, K., Son, S.H.: Design and evaluation of token-based reservation for a roadway system. Transp. Res. Part C: Emerg. Technol. 26, 184–202 (2013)

    Article  Google Scholar 

  4. Liu, K., Ng, J.K., Lee, V.C., Son, S.H., Stojmenovic, I.: Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a software defined network. IEEE/ACM Trans. Netw. 24(3), 1759–1773 (2015)

    Article  Google Scholar 

  5. Aujla, G.S., Chaudhary, R., Kumar, N., Rodrigues, J.J., Vinel, A.: Data offloading in 5G-enabled software-defined vehicular networks: a Stackelberg-game-based approach. IEEE Commun. Mag. 55(8), 100–108 (2017)

    Article  Google Scholar 

  6. Baron, B., Spathis, P., Rivano, H., de Amorim, M.D., Viniotis, Y., Ammar, M.H.: Centrally controlled mass data offloading using vehicular traffic. IEEE Trans. Netw. Serv. Manage. 14(2), 401–415 (2017)

    Article  Google Scholar 

  7. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)

    Article  Google Scholar 

  8. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. 6(5), 7635–7647 (2019)

    Article  Google Scholar 

  9. Ning, Z., Huang, J., Wang, X., Rodrigues, J.J., Guo, L.: Mobile edge computing-enabled internet of vehicles: toward energy-efficient scheduling. IEEE Netw. 33(5), 198–205 (2019)

    Article  Google Scholar 

  10. Wang, X., Sui, Y., Wang, J., Yuen, C., Wu, W.: A distributed truthful auction mechanism for task allocation in mobile cloud computing. IEEE Trans. Serv. Comput. (2018)

    Google Scholar 

  11. Feng, J., Liu, Z., Wu, C., Ji, Y.: Mobile edge computing for the internet of vehicles: offloading framework and job scheduling. IEEE Veh. Technol. Mag. 14(1), 28–36 (2018)

    Article  Google Scholar 

  12. Fan, X., Cui, T., Cao, C., Chen, Q., Kwak, K.S.: Minimum-cost offloading for collaborative task execution of MEC-assisted platooning. Sensors 19(4), 847 (2019)

    Article  Google Scholar 

  13. Liu, K., Xu, X., Chen, M., Liu, B., Wu, L., Lee, V.C.: A hierarchical architecture for the future internet of vehicles. IEEE Commun. Mag. 57(7), 41–47 (2019)

    Article  Google Scholar 

  14. Li, Z., Dai, Y., Chen, G., Liu, Y.: Content Distribution for Mobile Internet: A Cloud-Based Approach. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-1463-5

    Book  Google Scholar 

  15. Ono, I., Kita, H., Kobayashi, S.: A real-coded genetic algorithm using the unimodal normal distribution crossover. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 213–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18965-4_8

    Chapter  Google Scholar 

  16. Wang, J., Liu, T., Liu, K., Kim, B., Xie, J., Han, Z.: Computation offloading over fog and cloud using multi-dimensional multiple knapsack problem. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2018)

    Google Scholar 

  17. Du, J., Zhao, L., Feng, J., Chu, X.: Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Trans. Commun. 66(4), 1594–1608 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61872049, and in part by the Fundamental Research Funds for the Central Universities under Project No. 2020CDCGJ004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, H., Liu, K., Dai, P., Li, Y., Xie, R., Guo, S. (2020). Adaptive Task Scheduling via End-Edge-Cloud Cooperation in Vehicular Networks. In: Yu, D., Dressler, F., Yu, J. (eds) Wireless Algorithms, Systems, and Applications. WASA 2020. Lecture Notes in Computer Science(), vol 12384. Springer, Cham. https://doi.org/10.1007/978-3-030-59016-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59016-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59015-4

  • Online ISBN: 978-3-030-59016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics