Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transfer-Expanded Graphs for On-Demand Multimodal Transit Systems

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020)

Abstract

This paper considers a generalization of the network design problem for On-Demand Multimodal Transit Systems (ODMTS). An ODMTS consists of a selection of hubs served by high frequency buses, and passengers are connected to the hubs by on-demand shuttles which serve the first and last miles. This paper generalizes prior work by including three additional elements that are critical in practice. First, different frequencies are allowed throughout the network. Second, additional modes of transit (e.g., rail) are included. Third, a limit on the number of transfers per passenger is introduced. Adding a constraint to limit the number of transfers has a significant negative impact on existing Benders decomposition approaches as it introduces non-convexity in the subproblem. Instead, this paper enforces the limit through transfer-expanded graphs, i.e., layered graphs in which each layer corresponds to a certain number of transfers. A real-world case study is presented for which the generalized ODMTS design problem is solved for the city of Atlanta. The results demonstrate that exploiting the problem structure with transfer-expanded graphs results in significant computational improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aneja, Y.P., Nair, K.P.K.: The constrained shortest path problem. Naval Res. Logistics Q. 25(3), 549–555 (1978). https://doi.org/10.1002/nav.3800250314

    Article  MathSciNet  MATH  Google Scholar 

  2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)

    Article  MathSciNet  Google Scholar 

  3. Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M.: The continuous-time service network design problem. Oper. Res. 65(5), 1303–1321 (2017). https://doi.org/10.1287/opre.2017.1624

    Article  MathSciNet  MATH  Google Scholar 

  4. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54(4), 756–766 (2006). https://doi.org/10.1287/opre.1060.0286

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press (2009)

    Google Scholar 

  6. Dahl, G., Realfsen, B.: The cardinality-constrained shortest path problem in 2-graphs. Networks 36(1), 1–8 (2000)

    Article  MathSciNet  Google Scholar 

  7. Fischetti, M., Ljubić, I., Sinnl, M.: Redesigning Benders decomposition for large-scale facility location. Manag. Sci. 63(7), 2146–2162 (2017). https://doi.org/10.1287/mnsc.2016.2461

    Article  Google Scholar 

  8. Gouveia, L., Leitner, M., Ruthmair, M.: Layered graph approaches for combinatorial optimization problems. Comput. Oper. Res. 102, 22–38 (2019). https://doi.org/10.1016/j.cor.2018.09.007

    Article  MathSciNet  MATH  Google Scholar 

  9. Hasan, M.H., Van Hentenryck, P.: A column-generation algorithm for evacuation planning with elementary paths. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 549–564. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_35

    Chapter  Google Scholar 

  10. Laporte, G., Louveaux, F.V., Van Hamme, L.: An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50(3), 415–423 (2002). https://doi.org/10.1287/opre.50.3.415.7751

    Article  MathSciNet  MATH  Google Scholar 

  11. Mahéo, A., Kilby, P., Van Hentenryck, P.: Benders decomposition for the design of a hub and shuttle public transit system. Transp. Sci. 53(1), 77–88 (2019). https://doi.org/10.1287/trsc.2017.0756

    Article  Google Scholar 

  12. Moccia, L., Cordeau, J.F., Monaco, M.F., Sammarra, M.: A column generation heuristic for a dynamic generalized assignment problem. Comput. Oper. Res. 36(9), 2670–2681 (2009). https://doi.org/10.1016/j.cor.2008.11.022

    Article  MATH  Google Scholar 

  13. Pillac, V., Cebrian, M., Van Hentenryck, P.: A column-generation approach for joint mobilization and evacuation planning. Constraints 20(3), 285–303 (2015). https://doi.org/10.1007/s10601-015-9189-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Pillac, V., Van Hentenryck, P., Even, C.: A conflict-based path-generation heuristic for evacuation planning. Transp. Res. Part B: Methodol. 83, 136–150 (2016). https://doi.org/10.1016/j.trb.2015.09.008

    Article  Google Scholar 

Download references

Acknowledgements

This research is partly supported by NSF Leap HI proposal NSF-1854684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Dalmeijer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalmeijer, K., Van Hentenryck, P. (2020). Transfer-Expanded Graphs for On-Demand Multimodal Transit Systems. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics