Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spatial Knowledge in Large-Scale Environments: A Preliminary Planning-Oriented Study

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12255))

Included in the following conference series:

  • 2449 Accesses

Abstract

Strategic planning has recently focused its attention on the elements that characterize the spaces through which the agents move, paying particular attention on the way in which they incorporate them. Spatial environments are currently studied from different perspectives, from the cognitivist point of view they represent knowledge-intensive, significant spatial entities to which human agents need to relate adaptively.

The way in which humans use the surrounding space is influenced by a series of implicit factors, such as perceptions, emotions, sensations. These elements, being often tacit, are difficult to identify although they strongly characterize these spaces. For this reason, these characteristics become basic for effective strategic planning at urban and regional level and for environmental decision-making processes.

This study presents a method for quantitatively measuring the reactions of visitors to scenes they encounter in spaces with an extremely small population. We conducted an experiment that required participants to take photographs of elements that caught their attention in poorly structured rural areas. In this way, the photographed features and the related comments have made it possible to better grasp perceptions, sensations, emotions that can represent crucial spatial variables for structuring and interpreting spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.): Spatial Cognition 2006. LNCS (LNAI), vol. 4387. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75666-8

    Book  Google Scholar 

  2. Barkowsky, T., Freksa, C.: Cognitive requirements on making and interpreting maps. In: Hirtle, S.C., Frank, A.U. (eds.) COSIT 1997. LNCS, vol. 1329, pp. 347–361. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63623-4_60

    Chapter  Google Scholar 

  3. Bell, S. (ed.): Landscape, Pattern, Perception and Process. E&FNSpon, New York (1999)

    Google Scholar 

  4. Borri, D., Camarda, D.: Visualizing space-based interactions among distributed agents: environmental planning at the inner-city scale. In: Luo, Y. (ed.) CDVE 2006. LNCS, vol. 4101, pp. 182–191. Springer, Heidelberg (2006). https://doi.org/10.1007/11863649_23

    Chapter  Google Scholar 

  5. Borri, D., Camarda, D.: Spatial ontologies in multi-agent environmental planning. In: Yearwood, J., Stranieri, A. (eds.) Technologies for Supporting Reasoning Communities and Collaborative Decision Making: Cooperative Approaches, pp. 272–295. IGI Global Information Science, Hershey (2010)

    Google Scholar 

  6. Borri, D., Camarda, D.: Modelling space perception in urban planning: a cognitive ai-based approach. In: Ali, M., Bosse, T., Hindriks, K., Hoogendoorn, M., Jonker, C., Treur, J. (eds.) Contemporary Challenges and Solutions in Applied Artificial Intelligence. Studies in Computational Intelligence, vol. 489. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00651-2_1

  7. Campos, M., Velázquez, A., Verdinelli, G.B., Priego-Santander, Á.G., McCall, M.K., Boada, M.: Rural people’s knowledge and perception of landscape: a case study from the mexican pacific coast. Soc. Nat. Resour. 25(8), 759–774 (2012). https://doi.org/10.1080/08941920.2011.606458

    Article  Google Scholar 

  8. Chenoweth, R.E., Gobster, P.H.: The nature and ecology of aesthetic experiences in the landscape. Landscape J. 9(1), 1–8 (1990)

    Article  Google Scholar 

  9. Cohen, P., West, S., Aiken, L. (eds.): Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Psychology Press, New York (2014)

    Google Scholar 

  10. Danziger, D., Rafal, R.: The effect of visual signals on spatial decision making. Cognition 110, 182–197 (2009)

    Article  Google Scholar 

  11. Day, S.B., Bartels, D.M.: Representation over time: the effects of temporal distance on similarity. Cognition 106, 1504–1513 (2008)

    Article  Google Scholar 

  12. de Hevia, D.M., Spelke, E.S.: Spontaneous mapping of number and space in adults and young children. Cognition 110, 198–207 (2009)

    Article  Google Scholar 

  13. Denis, M., Loomis, J.M.: Perspectives on human spatial cognition: memory, navigation and environmental learning. Psychol. Res. 71, 235–239 (2007). https://doi.org/10.1007/s00426-006-0079-x

    Article  Google Scholar 

  14. Dolins, F.L., Mitchell, R.W.: Spatial Cognition, Spatial Perception: Mapping the Self and Space. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  15. Gantar, D., Golobič, M.: Landscape scenarios: a study of influences on attitudes and actions, a rural landscape. Futures 69, 1–13 (2015). https://doi.org/10.1016/j.futures.2015.02.002

    Article  Google Scholar 

  16. Georgiev A., Allen P.K.: Localization methods for a mobile robot in urban environments. IEEE Trans. Robot. Autom. ({TRO}) 20, 851–864 (2004)

    Google Scholar 

  17. Gero, J.S., Tversky, B. (eds.): Visual and spatial reasoning in design. University of Sydney, Key Centre of Design Computing and Cognition, Sydney (1999)

    Google Scholar 

  18. Goodman, N.: The Structure of Appearance. Harvard UP, Cambridge (1951)

    Google Scholar 

  19. Hadavi, S., Kaplan, R., Hunter, M.C.R.: Environmental affordances: a practical approach for design of nearby outdoor settings in urban residential areas. Landscape Urban Plann. 134(2015), 19–32 (2014)

    Google Scholar 

  20. Hirtle, S.C.: Neighborhoods and Landmarks. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 191–230. Taylor & Francis, London (2003)

    Chapter  Google Scholar 

  21. Kaplan, R.: The analysis of perception via preference - a strategy for studying how the environment is experienced. Landscape Plann. 12(2), 161–176 (1985). http://dx.doi.org/10.1016/0304-3924(85)90058-9

  22. Kaplan, S., Kaplan, R. (eds.): Cognition and environment—functioning in anuncertain world. Praeger, New York (1982)

    Google Scholar 

  23. Kelly, D.M., Bischof, W.F.: Orienting in virtual environments: how are surface features and environmental geometry weighted in an orientation task? Cognition 109, 89–104 (2008)

    Article  Google Scholar 

  24. Kelly, J.W., McNamara, T.P.: Reference frames during the acquisition and development of spatial memories. Cognition 116(3), 409–420 (2010)

    Article  Google Scholar 

  25. Koun, S.: Quantitative measurement of visitors’ reactions to the settings in urban parks: spatial and temporal analysis of photographs. Landscape Urban Plann. 110(2013), 59–63 (2012)

    Google Scholar 

  26. Le Yaouanc, J.M., Saux, E., Claramunt, C.: A semantic and language-based representation of an environmental scene. GeoInformatica 14(3), 333–352 (2010). https://doi.org/10.1007/s10707-010-0103-6

    Article  Google Scholar 

  27. Lipinski, J., Simmering, V.R, Johnson, J.S., Spencer, J.P.: The role of experience in location estimation: target distributions shift location memory biases. Cognition 115(1), 147–153 (2010)

    Google Scholar 

  28. Lynch, K.: The Image of the City. MIT Press, Cambridge (1960)

    Google Scholar 

  29. Markwell, K.W.: Dimensions of photography in a nature-based tour. Ann. Tourism Res. 24, 131–155 (1997). https://doi.org/10.1016/S0160-7383(96)00053-9

    Article  Google Scholar 

  30. Nassauer, J.I.: Care and Stewardship—from home to planet. Landscape urban Plann. 100(4), 321–323 (2011). https://doi.org/10.1016/j.landurbplan.2011.02.022

    Article  Google Scholar 

  31. Oku, H., Fukamachi, K.: The differences in scenic perception of forest visitors through their attributes and recreational activity. Landscape Urban Plann. 75(2006), 34–42 (2004)

    Google Scholar 

  32. Pouget, A., Ducom, J.C., Torri, J., Bavelier, D.: Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83, B1–B11 (2002)

    Article  Google Scholar 

  33. Proulx, M.J., Todorov, O.S., Taylor, A.A., de Sousa, A.A.: Where am I? Who am I? The relation between spatial cognition, social cognition and individual differences in the built environment. Front. Psychol. 7, 64 (2016). https://doi.org/10.3389/fpsyg.2016.00064

  34. Selicato, F., Camarda, D., Cera, M.: Engineering education vs. environmental planning: a case-study in Southern Italy. Plann. Pract. Res 27(2), 275–291 (2012)

    Google Scholar 

  35. Shuttleworth, S.: The use of photographs as an environment presentation medium in landscape studies. J. Environ. Manage. 11(1), 61–76 (1980)

    Google Scholar 

  36. Sugimoto, K.: Analysis of scenic perception and its spatial tendency: using digital cameras, GPS LOGGERS, AND GIS. Proc. Soc. Behav. Sci. 21(2011), 43–52 (2011)

    Article  Google Scholar 

  37. Wang, R.F., Spelke, E.S.: Updating egocentric representation in human navigation. Cognition 77(3), 215–250 (2000)

    Article  Google Scholar 

  38. Weinreb, A.R., Rofè, Y.: Mapping feeling: an approach to the study of emotional response to the built environment and landscape. J. Archit. Plann. Res. 30(2), 127–145 (2013)

    Google Scholar 

  39. Wong, K-K., Domroes, M.: The visual quality of urban park scenes of Kowloon park, Hong Kong: likeability, affective appraisal, and cross-cultural perspectives. Environ. Plann. B Plann. Des. 32, 617–32 (2005)

    Google Scholar 

  40. Zube, E.H., Sell, J.L., Taylor, J.G.: Landscape perception: research, application and theory. Landscape Plann. 9, 1–33 (1982). https://doi.org/10.1016/0304-3924(82)90009-

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Camarda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mastrodonato, G., Camarda, D. (2020). Spatial Knowledge in Large-Scale Environments: A Preliminary Planning-Oriented Study. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics