Abstract
In this paper we describe typical HPC workloads in terms of scheduling theory models. In particular, we cover machine environments that are common for high performance computing (HPC) field, possible objective functions and available jobs characteristics. We also describe resources that are required by HPC applications and how to monitor and control their usage rates. We provide the basis for defining mathematical model for application resource usage and validate it on experimental data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3), 63–73 (1991)
Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Sterna, M., Weglarz, J.: Handbook on Scheduling: From Theory to Practice. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-319-99849-7
Castain, R.H., Hursey, J., Bouteiller, A., Solt, D.: Pmix: process management for exascale environments. Parallel Comput. 79, 9–29 (2018)
Gawiejnowicz, S.: Time-Dependent Scheduling. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69446-5
Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux clusters. In: Journal of Physics: Conference Series, vol. 46, p. 494. IOP Publishing (2006)
Haritatos, A.H., Papadopoulou, N., Nikas, K., Goumas, G., Koziris, N.: Contention-aware scheduling policies for fairness and throughput. Co-Sched. HPC Appl. 28, 22 (2017)
Kuchumov, R., Korkhov, V.: Fair resource allocation for running HPC workloads simultaneously. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 740–751. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_55
Louca, S., Neophytou, N., Lachanas, A., Evripidou, P.: MPI-FT: Portable fault tolerance scheme for MPI. Parallel Process. Lett. 10(04), 371–382 (2000)
Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating LinuX containers using CRIU. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 674–684. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6_47
Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, vol. 5. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-2361-4
Trinitis, C., Weidendorfer, J.: Co-scheduling of HPC Applications, vol. 28. IOS Press (2017)
Acknowledgements
Research has been supported by the RFBR grant No. 19-37-90138.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuchumov, R., Korkhov, V. (2020). Collecting HPC Applications Processing Characteristics to Facilitate Co-scheduling. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12254. Springer, Cham. https://doi.org/10.1007/978-3-030-58817-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-58817-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58816-8
Online ISBN: 978-3-030-58817-5
eBook Packages: Computer ScienceComputer Science (R0)