Nothing Special   »   [go: up one dir, main page]

Skip to main content

Development of a Tool for Control Loop Performance Assessment

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

This article describes the primary characteristics of a tool developed to perform a control loop performance assessment, named SELC due to its name in Spanish. With this tool, we expect to increase the reliability and efficiency of productive processes in Colombia’s industry. A brief description of SELC’s functionality and a literature review about the different techniques integrated is presented. Finally, the results and conclusions of the testing phase were presented, performed with both simulated and real data. The actual data comes from an online industrial repository provided by the South African Council for Automation and Control (SACAC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, M., Horch, A., Xie, L., Jelali, M., Thornhill, N.: The current state of control loop performance monitoring–a survey of application in industry. J. Process Control 38, 1–10 (2016)

    Article  Google Scholar 

  2. Jelali, M.: Control Performance Management in Industrial Automation: Assessment. Diagnosis and Improvement of Control Loop Performance. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4546-2

    Book  Google Scholar 

  3. Thornhill, N.F., Horch, A.: Advances and new directions in plant-wide disturbance detection and diagnosis. Control Eng. Pract. 15(10), 1196–1206 (2007)

    Article  Google Scholar 

  4. Cardenas-Cabrera, J., et al.: Model predictive control strategies performance evaluation over a pipeline transportation system. J. Control Sci. Eng. 2019, 1–11 (2019)

    Article  Google Scholar 

  5. Borrero-Salazar, A.A., Cardenas-Cabrera, J.M., Barros-Gutierrez, D.A., Jiménez-Cabas, J.A.: A comparison study of MPC strategies based on minimum variance control index performance. Espacios 40(20) (2019)

    Google Scholar 

  6. Longhi, L.G.S., et al.: Control loop performance assessment and improvement of an industrial hydrotreating unit and its economical benefits. Sba Control. Automação Soc. Bras. Autom. 23(1), 60–77 (2012)

    Article  Google Scholar 

  7. Farenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Universidade Federal do Rio Grande do Sul (2008)

    Google Scholar 

  8. Harris, T.J.: Assessment of control loop performance. Can. J. Chem. Eng. 67(5), 856–861 (1989)

    Article  Google Scholar 

  9. Farenzena, M., Trierweiler, J.O.: Quantifying the impact of control loop performance, time delay and white-noise over the final product variability. In: Cancun, Mexico: International Symposium on Dynamics and Control of Process Systems (2007)

    Google Scholar 

  10. Swanda, A.P., Seborg, D.E.: Evaluating the performance of PID-type feedback control loops using normalized settling time. IFAC Proc. 30(9), 301–306 (1997)

    Article  Google Scholar 

  11. Swanda, A.P., Seborg, D.E.: Controller performance assessment based on setpoint response data. In: Proceedings of the 1999 American Control Conference, vol. 6, pp. 3863–3867 (1999)

    Google Scholar 

  12. Hägglund, T.: Automatic detection of sluggish control loops. Control Eng. Pract. 7(12), 1505–1511 (1999)

    Article  Google Scholar 

  13. Vishnubhotla, A.: Frequency and time-domain techniques for control loop performance assessment (1997)

    Google Scholar 

  14. Srinivasan, R., Rengaswamy, R., Miller, R.: Control loop performance assessment. 1. A qualitative approach for stiction diagnosis. Ind. Eng. Chem. Res. 44(17), 6708–6718 (2005)

    Article  Google Scholar 

  15. Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F., Shook, D.S.: Automatic detection and quantification of stiction in control valves. Control Eng. Pract. 14(12), 1395–1412 (2006)

    Article  Google Scholar 

  16. Maruta, H., Kano, M., Kugemoto, H., Shimizu, K.: Modeling and detection of stiction in pneumatic control valve. Trans. Soc. Instrum. Control Eng. 40(8), 825–833 (2004)

    Article  Google Scholar 

  17. He, Q.P., Wang, J., Pottmann, M., Qin, S.J.: A curve fitting method for detecting valve stiction in oscillating control loops. Ind. Eng. Chem. Res. 46(13), 4549–4560 (2007)

    Article  Google Scholar 

  18. Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control. Editorial F{é}lix Varela (2012)

    Google Scholar 

  19. Bauer, M., Auret, L., le Roux, D., Aharonson, V.: An industrial PID data repository for control loop performance monitoring (CPM). IFAC-PapersOnLine 51(4), 823–828 (2018)

    Article  Google Scholar 

  20. Thornhill, N.F., Cox, J.W., Paulonis, M.A.: Diagnosis of plant-wide oscillation through data-driven analysis and process understanding. Control Eng. Pract. 11(12), 1481–1490 (2003)

    Article  Google Scholar 

  21. Horch, A.: A simple method for detection of stiction in control valves. Control Eng. Pract. 7(10), 1221–1231 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Meléndez-Pertuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiménez-Cabas, J. et al. (2020). Development of a Tool for Control Loop Performance Assessment. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics