Abstract
This article describes the primary characteristics of a tool developed to perform a control loop performance assessment, named SELC due to its name in Spanish. With this tool, we expect to increase the reliability and efficiency of productive processes in Colombia’s industry. A brief description of SELC’s functionality and a literature review about the different techniques integrated is presented. Finally, the results and conclusions of the testing phase were presented, performed with both simulated and real data. The actual data comes from an online industrial repository provided by the South African Council for Automation and Control (SACAC).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bauer, M., Horch, A., Xie, L., Jelali, M., Thornhill, N.: The current state of control loop performance monitoring–a survey of application in industry. J. Process Control 38, 1–10 (2016)
Jelali, M.: Control Performance Management in Industrial Automation: Assessment. Diagnosis and Improvement of Control Loop Performance. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4546-2
Thornhill, N.F., Horch, A.: Advances and new directions in plant-wide disturbance detection and diagnosis. Control Eng. Pract. 15(10), 1196–1206 (2007)
Cardenas-Cabrera, J., et al.: Model predictive control strategies performance evaluation over a pipeline transportation system. J. Control Sci. Eng. 2019, 1–11 (2019)
Borrero-Salazar, A.A., Cardenas-Cabrera, J.M., Barros-Gutierrez, D.A., Jiménez-Cabas, J.A.: A comparison study of MPC strategies based on minimum variance control index performance. Espacios 40(20) (2019)
Longhi, L.G.S., et al.: Control loop performance assessment and improvement of an industrial hydrotreating unit and its economical benefits. Sba Control. Automação Soc. Bras. Autom. 23(1), 60–77 (2012)
Farenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Universidade Federal do Rio Grande do Sul (2008)
Harris, T.J.: Assessment of control loop performance. Can. J. Chem. Eng. 67(5), 856–861 (1989)
Farenzena, M., Trierweiler, J.O.: Quantifying the impact of control loop performance, time delay and white-noise over the final product variability. In: Cancun, Mexico: International Symposium on Dynamics and Control of Process Systems (2007)
Swanda, A.P., Seborg, D.E.: Evaluating the performance of PID-type feedback control loops using normalized settling time. IFAC Proc. 30(9), 301–306 (1997)
Swanda, A.P., Seborg, D.E.: Controller performance assessment based on setpoint response data. In: Proceedings of the 1999 American Control Conference, vol. 6, pp. 3863–3867 (1999)
Hägglund, T.: Automatic detection of sluggish control loops. Control Eng. Pract. 7(12), 1505–1511 (1999)
Vishnubhotla, A.: Frequency and time-domain techniques for control loop performance assessment (1997)
Srinivasan, R., Rengaswamy, R., Miller, R.: Control loop performance assessment. 1. A qualitative approach for stiction diagnosis. Ind. Eng. Chem. Res. 44(17), 6708–6718 (2005)
Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F., Shook, D.S.: Automatic detection and quantification of stiction in control valves. Control Eng. Pract. 14(12), 1395–1412 (2006)
Maruta, H., Kano, M., Kugemoto, H., Shimizu, K.: Modeling and detection of stiction in pneumatic control valve. Trans. Soc. Instrum. Control Eng. 40(8), 825–833 (2004)
He, Q.P., Wang, J., Pottmann, M., Qin, S.J.: A curve fitting method for detecting valve stiction in oscillating control loops. Ind. Eng. Chem. Res. 46(13), 4549–4560 (2007)
Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control. Editorial F{é}lix Varela (2012)
Bauer, M., Auret, L., le Roux, D., Aharonson, V.: An industrial PID data repository for control loop performance monitoring (CPM). IFAC-PapersOnLine 51(4), 823–828 (2018)
Thornhill, N.F., Cox, J.W., Paulonis, M.A.: Diagnosis of plant-wide oscillation through data-driven analysis and process understanding. Control Eng. Pract. 11(12), 1481–1490 (2003)
Horch, A.: A simple method for detection of stiction in control valves. Control Eng. Pract. 7(10), 1221–1231 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jiménez-Cabas, J. et al. (2020). Development of a Tool for Control Loop Performance Assessment. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-58802-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58801-4
Online ISBN: 978-3-030-58802-1
eBook Packages: Computer ScienceComputer Science (R0)