Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Mass Size Effect on the Breast Cancer Detection Using 2-Levels of Evaluation

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI 2020)

Abstract

Breast cancer is one of the most dangerous cancers and with the tremendous increase in the mammograms taken daily, computer-aided diagnosis systems play an important role for a fast and accurate prediction. In this paper, we propose three phases to detect and classify breast tumors. First, is the data preparation for converting DICOM files to images without losing data. Then, they are divided into mammograms with large and small masses representing the input to the second model training phase. The third phase is the model evaluation through two testing levels, first is the large masses checking and the second level is the small masses checking to output the detection results for large and small masses. The two testing levels using the trained small and large masses model overcomes the recent YOLO based detection work and the combined sizes trained model by achieving an overall accuracy of 89.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyle, P., Levin, B., et al.: World Cancer Report 2008. IARC Press, International Agency for Research on Cancer, Lyon (2008)

    Google Scholar 

  2. Al-antari, M.A., Al-masni, M.A., Park, S.U., Park, J.H., Metwally, M.K., Kadah, Y.M., Han, S.M., Kim, T.S.: An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J. Med. Biol. Eng. 38(3), 443–456 (2017)

    Article  Google Scholar 

  3. Al-masni, M., Al-antari, M.A., Park, J.M., Gi, G., Kim, T., Rivera, P., Valarezo, E., Han, S.M., Kim, T.S.: Detection and classification of the breast abnormalities in digital mammograms via regional convolutional neural network. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017), Jeju Island, South Korea, pp. 1230–1236 (2017)

    Google Scholar 

  4. Al-masni, M.A., Al-antari, M., Park, J.M., Gi, G., Kim, T.Y.K., Rivera, P., Valarezo, E., Choi, M.T., Han, S.M., Kim, T.S.: Simultaneous detection and classifi-cation of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Meth. Prog. Biomed 157, 85–94 (2018)

    Article  Google Scholar 

  5. Al-antari, M.A., Al-masni, M.A., Park, S.U., Park, J.H., Kadah, Y.M. Han, S.M., Kim, T. S.: Automatic computer-aided diagnosis of breast cancer in digital mammograms via deep belief network, Global Conference on Engineering and Applied Science (GCEAS), Japan, pp. 1306–1314 (2016)

    Google Scholar 

  6. Al-antari, M.A., Al-masni, M.A., Kadah, Y.M.: Hybrid model of computer-aided breast cancer diagnosis from digital mammograms. J. Sci. Eng. 04(2), 114–126 (2017)

    Google Scholar 

  7. Wang, Y., Tao, D., Gao, X., Li, X., Wang, B.: Mammographic mass segmentation: embedding multiple features in vector-valued level set in ambiguous regions. Pattern Recognit. 44(9), 1903–1915 (2011)

    Article  Google Scholar 

  8. Rahmati, P., Adler, A., Hamarneh, G.: Mammography segmentation with maximum likelihood active contours. Med. Image Anal. 16(9), 1167–1186 (2012)

    Article  Google Scholar 

  9. Domnguez, A.R., Nandi, A.: Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit. 42(6), 1138–1148 (2009)

    Article  Google Scholar 

  10. Qiu, Y., Yan, S., Gundreddy, R.R., Wang, Y., Cheng, S., Liu, H., Zheng, B.: A new approach to develop computer-aided diagnosis Scheme of breast mass classification using deep learning technology. J. X-Ray Sci. Technol. 25(5), 751–763 (2017)

    Article  Google Scholar 

  11. Hamed, G., Marey, M.A.E.R., Amin, S.E.S., Tolba, M.F.: Deep learning in breast cancer detection and classification. In: Joint European-US Workshop on Applications of Invariance in Computer Vision, pp. 322–333. Springer, Cham (2020)

    Google Scholar 

  12. Hamed, G., Marey, M., Amin, S.E.S. and Tolba, M.F.: A Proposed Model for denoising breast mammogram images. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 652–657. IEEE December 2018

    Google Scholar 

  13. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4), 198–211 (2007)

    Article  Google Scholar 

  14. Van Ginneken, B., ter Haar Romeny, B.M., Viergever, M.: Computer-aided diagnosis in chest radiography: a survey. IEEE Trans. Med. Imaging 20(12), 1228–1241 (2001)

    Article  Google Scholar 

  15. Jiang, Y., Nishikawa, R.M., Schmidt, R.A., et al.: Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 6(1), 2233 (1999)

    Article  Google Scholar 

  16. Chan, H.-P., Doi, K., Vybrony, C.J., et al.: Improvement in radiologists detection of clustered microcalcifications on mammograms: the potential of computer aided diagnosis. Invest. Radiol. 25(10), 1102–1110 (1990)

    Article  Google Scholar 

  17. Dhungel, N., Carneiro, G., Bradley, A.P.: 2015. Automated mass detection from mammograms using deep learning and random forest. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA) (2018). https://doi.org/10.1109/dicta.2015.7371234

  18. Jiao, Z., Gao, X., Wang, Y., Li, J.: A deep feature based framework for breast masses classification. Neurocomputing 197, 221–231 (2016)

    Article  Google Scholar 

  19. Suzuki, S., Zhang, X., Homma, N., Ichiji, K., Sugita, N., Kawasumi, Y., Ishibashi, T., Yoshizawa, M.: Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis. In: Proceedings of the SICE Annual Conference 2016, Tsukuba, Japan, pp. 1382–1386 (2016)

    Google Scholar 

  20. Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E.: A region based convolutional network for tumor detection and classification in breast mammography, pp. 197–205. Springer, Cham (2016)

    Google Scholar 

  21. Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzbski, S., et al.: Deep neural networks improve radiologists performance in breast cancer screening. IEEE Trans. Med. Imaging 39(4), 1184–1194 (2019)

    Article  Google Scholar 

  22. Jiang F.: Breast mass lesion classification in mammograms by transfer learn-ing. In: ICBCB17, Hong Kong, pp 59–62 (2017). https://doi.org/10.1145/3035012.3035022

  23. Rodriguez-Ruiz, A., Lng, K., Gubern-Merida, A., Broed-ers, M., Gennaro, G., Clauser, P., Thomas, H.H., et al.: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radi-ologists. JNCI: J. Natl. Cancer Inst. 111(9), 916–922 (2019)

    Article  Google Scholar 

  24. Moreira, I., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M., Cardoso, J.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  25. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography dataset for use in computer-aided detection and diagnosis research. Sci. Data 4, 170–177 (2017)

    Google Scholar 

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  27. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  28. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamed, G., Marey, M.A.ER., Amin, S.ES., Tolba, M.F. (2021). The Mass Size Effect on the Breast Cancer Detection Using 2-Levels of Evaluation. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_30

Download citation

Publish with us

Policies and ethics