Nothing Special   »   [go: up one dir, main page]

Skip to main content

Toward Fine-Grained Facial Expression Manipulation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12373))

Included in the following conference series:

  • 3768 Accesses

Abstract

Facial expression manipulation aims at editing facial expression with a given condition. Previous methods edit an input image under the guidance of a discrete emotion label or absolute condition (e.g., facial action units) to possess the desired expression. However, these methods either suffer from changing condition-irrelevant regions or are inefficient for fine-grained editing. In this study, we take these two objectives into consideration and propose a novel method. First, we replace continuous absolute condition with relative condition, specifically, relative action units. With relative action units, the generator learns to only transform regions of interest which are specified by non-zero-valued relative AUs. Second, our generator is built on U-Net but strengthened by multi-scale feature fusion (MSF) mechanism for high-quality expression editing purposes. Extensive experiments on both quantitative and qualitative evaluation demonstrate the improvements of our proposed approach compared to the state-of-the-art expression editing methods. Code is available at https://github.com/junleen/Expression-manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/albertpumarola/GANimation.

  2. 2.

    https://github.com/ageitgey/face_recognition.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  2. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, pp. 59–66. IEEE (2018)

    Google Scholar 

  3. Barratt, S., Sharma, R.: A note on the inception score. arXiv preprint arXiv:1801.01973 (2018)

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  6. Chu, M., Xie, Y., Leal-Taixé, L., Thuerey, N.: Temporally coherent GANs for video super-resolution (TecoGAN). arXiv preprint arXiv:1811.09393 (2018)

  7. Friesen, E., Ekman, P.: Facial action coding system: a technique for the measurement of facial movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  8. Geng, Z., Cao, C., Tulyakov, S.: 3D guided fine-grained face manipulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9821–9830 (2019)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GAN. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  11. He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: AttGAN: facial attribute editing by only changing what you want. IEEE Trans. Image Process. 28, 5464–5478 (2019)

    Article  MathSciNet  Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  14. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv: Learning (2014)

  16. Li, M., Zuo, W., Zhang, D.: Deep identity-aware transfer of facial attributes. arXiv preprint arXiv:1610.05586 (2016)

  17. Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing, pp. 3673–3682 (2019)

    Google Scholar 

  18. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)

    Google Scholar 

  19. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 469–477 (2016)

    Google Scholar 

  20. Mirza, M., Osindero, S.: Conditional generative adversarial nets. Computer Science, pp. 2672–2680 (2014)

    Google Scholar 

  21. Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2017)

    Article  Google Scholar 

  22. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  23. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  24. Peng, X.B., Kanazawa, A., Toyer, S., Abbeel, P., Levine, S.: Variational discriminator bottleneck: improving imitation learning, inverse RL, and GANs by constraining information flow. arXiv preprint arXiv:1810.00821 (2018)

  25. Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)

  26. Pumarola, A., Agudo, A., Martinez, A.M., et al.: GANimation: one-shot anatomically consistent facial animation. Int. J. Comput. Vis. 128, 698–713 (2020). https://doi.org/10.1007/s11263-019-01210-3

    Article  Google Scholar 

  27. Qiao, F., Yao, N., Jiao, Z., Li, Z., Chen, H., Wang, H.: Geometry-contrastive GAN for facial expression transfer. arXiv preprint arXiv:1802.01822 (2018)

  28. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  29. Song, L., Lu, Z., He, R., Sun, Z., Tan, T.: Geometry guided adversarial facial expression synthesis. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 627–635. ACM (2018)

    Google Scholar 

  30. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  31. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1526–1535 (2018)

    Google Scholar 

  32. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  34. Wu, P.W., Lin, Y.J., Chang, C.H., Chang, E.Y., Liao, S.W.: RelGAN: Multi-domain image-to-image translation via relative attributes. arXiv preprint arXiv:1908.07269 (2019)

  35. Zhang, G., Kan, M., Shan, S., Chen, X.: Generative adversarial network with spatial attention for face attribute editing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_26

    Chapter  Google Scholar 

  36. Zhang, H., et al.: StackGAN:: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

    Google Scholar 

  37. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (61671296, U1611461), National Key R&D Project of China (2019YFB1802701), MoE-China Mobile Research Fund Project (MCM20180702) and the Shanghai Key Laboratory of Digital Media Processing and Transmissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ling, J., Xue, H., Song, L., Yang, S., Xie, R., Gu, X. (2020). Toward Fine-Grained Facial Expression Manipulation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics