Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Knowledge Distillation via Category Structure

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12373))

Included in the following conference series:

Abstract

Most previous knowledge distillation frameworks train the student to mimic the teacher’s output of each sample or transfer cross-sample relations from the teacher to the student. Nevertheless, they neglect the structured relations at a category level. In this paper, a novel Category Structure is proposed to transfer category-level structured relations for knowledge distillation. It models two structured relations, including intra-category structure and inter-category structure, which are intrinsic natures in relations between samples. Intra-category structure penalizes the structured relations in samples from the same category and inter-category structure focuses on cross-category relations at a category level. Transferring category structure from the teacher to the student supplements category-level structured relations for training a better student. Extensive experiments show that our method groups samples from the same category tighter in the embedding space and the superiority of our method in comparison with closely related works are validated in different datasets and models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  2. Chen, Y., Wang, N., Zhang, Z.: Darkrank: accelerating deep metric learning via cross sample similarities transfer. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1269–1277 (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge distillation with adversarial samples supporting decision boundary. Proc. AAAI Conf. Artif. Intell. 33, 3771–3778 (2019)

    Google Scholar 

  7. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. Proc. AAAI Conf. Artif. Intell. 33, 3779–3787 (2019)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  9. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)

  10. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

  11. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., Girshick, R.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2901–2910 (2017)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  13. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems, pp. 345–353 (2017)

    Google Scholar 

  14. Liu, Y., et al.: Knowledge distillation via instance relationship graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7096–7104 (2019)

    Google Scholar 

  15. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through \(l_0\) regularization. arXiv preprint arXiv:1712.01312 (2017)

  16. Luo, P., Zhu, Z., Liu, Z., Wang, X., Tang, X.: Face model compression by distilling knowledge from neurons. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  17. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  18. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)

  19. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)

    Google Scholar 

  20. Peng, B., et al.: Correlation congruence for knowledge distillation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5007–5016 (2019)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  22. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  23. Sau, B.B., Balasubramanian, V.N.: Deep model compression: Distilling knowledge from noisy teachers. arXiv preprint arXiv:1610.09650 (2016)

  24. Sindhwani, V., Sainath, T., Kumar, S.: Structured transforms for small-footprint deep learning. In: Advances in Neural Information Processing Systems, pp. 3088–3096 (2015)

    Google Scholar 

  25. Wang, X., Zhang, R., Sun, Y., Qi, J.: KDGAN: knowledge distillation with generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 775–786 (2018)

    Google Scholar 

  26. Xu, Z., Hsu, Y.C., Huang, J.: Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks. arXiv preprint arXiv:1709.00513 (2017)

  27. Yang, T.J., Chen, Y.H., Sze, V.: Designing energy-efficient convolutional neural networks using energy-aware pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5687–5695 (2017)

    Google Scholar 

  28. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

    Google Scholar 

  29. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  30. Zhou, Y., Moosavi-Dezfooli, S.M., Cheung, N.M., Frossard, P.: Adaptive quantization for deep neural network. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61972419, 61702558, 61672542), Natural Science Foundation of Hunan Province of China (2020JJ4120), and Fundamental Research Funds for the Central Universities of Central South University (2019zzts963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailan Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Zheng, X., Shen, H., Zeng, Z., Zhou, Y., Zhao, R. (2020). Improving Knowledge Distillation via Category Structure. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58604-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58603-4

  • Online ISBN: 978-3-030-58604-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics