Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spatial-Angular Interaction for Light Field Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

Light field (LF) cameras record both intensity and directions of light rays, and capture scenes from a number of viewpoints. Both information within each perspective (i.e., spatial information) and among different perspectives (i.e., angular information) is beneficial to image super-resolution (SR). In this paper, we propose a spatial-angular interactive network (namely, LF-InterNet) for LF image SR. Specifically, spatial and angular features are first separately extracted from input LFs, and then repetitively interacted to progressively incorporate spatial and angular information. Finally, the interacted features are fused to super-resolve each sub-aperture image. Experimental results demonstrate the superiority of LF-InterNet over the state-of-the-art methods, i.e., our method can achieve high PSNR and SSIM scores with low computational cost, and recover faithful details in the reconstructed images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y., Yang, J., Guo, Y., Xiao, C., An, W.: Selective light field refocusing for camera arrays using bokeh rendering and superresolution. IEEE Signal Process. Lett. 26(1), 204–208 (2018)

    Article  Google Scholar 

  2. Shin, C., Jeon, H.G., Yoon, Y., So Kweon, I., Joo Kim, S.: EPINET: a fully-convolutional neural network using epipolar geometry for depth from light field images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4748–4757 (2018)

    Google Scholar 

  3. Wang, T., Piao, Y., Li, X., Zhang, L., Lu, H.: Deep learning for light field saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 8838–8848 (2019)

    Google Scholar 

  4. Zhang, M., Li, J., WEI, J., Piao, Y., Lu, H.: Memory-oriented decoder for light field salient object detection. In: Advances in Neural Information Processing Systems, pp. 896–906 (2019)

    Google Scholar 

  5. Wang, Y., Wu, T., Yang, J., Wang, L., An, W., Guo, Y.: DeOccNet: learning to see through foreground occlusions in light fields. In: Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  6. Wilburn, B., et al.: High performance imaging using large camera arrays. ACM Trans. Graph. 24, 765–776 (2005)

    Article  Google Scholar 

  7. Venkataraman, K., et al.: PiCam: an ultra-thin high performance monolithic camera array. ACM Trans. Graph. 32(6), 166 (2013)

    Article  Google Scholar 

  8. Wu, G., Zhao, M., Wang, L., Dai, Q., Chai, T., Liu, Y.: Light field reconstruction using deep convolutional network on EPI. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6319–6327 (2017)

    Google Scholar 

  9. Wu, G., Liu, Y., Dai, Q., Chai, T.: Learning sheared EPI structure for light field reconstruction. IEEE Trans. Image Process. 28(7), 3261–3273 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jin, J., Hou, J., Yuan, H., Kwong, S.: Learning light field angular super-resolution via a geometry-aware network. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  11. Shi, J., Jiang, X., Guillemot, C.: Learning fused pixel and feature-based view reconstructions for light fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  12. Alain, M., Smolic, A.: Light field super-resolution via lfbm5d sparse coding. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2501–2505 (2018)

    Google Scholar 

  13. Zhang, S., Lin, Y., Sheng, H.: Residual networks for light field image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11046–11055 (2019)

    Google Scholar 

  14. Rossi, M., Frossard, P.: Geometry-consistent light field super-resolution via graph-based regularization. IEEE Trans. Image Process. 27(9), 4207–4218 (2018)

    Article  MathSciNet  Google Scholar 

  15. Wang, Y., Liu, F., Zhang, K., Hou, G., Sun, Z., Tan, T.: LFNet: a novel bidirectional recurrent convolutional neural network for light-field image super-resolution. IEEE Trans. Image Process. 27(9), 4274–4286 (2018)

    Article  MathSciNet  Google Scholar 

  16. Yeung, H.W.F., Hou, J., Chen, X., Chen, J., Chen, Z., Chung, Y.Y.: Light field spatial super-resolution using deep efficient spatial-angular separable convolution. IEEE Trans. Image Process. 28(5), 2319–2330 (2018)

    Article  MathSciNet  Google Scholar 

  17. Jin, J., Hou, J., Chen, J., Kwong, S.: Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  18. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  19. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  20. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 136–144 (2017)

    Google Scholar 

  21. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 286–301

    Google Scholar 

  22. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11065–11074 (2019)

    Google Scholar 

  23. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690 (2017)

    Google Scholar 

  24. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  25. Yoon, Y., Jeon, H.G., Yoo, D., Lee, J.Y., So Kweon, I.: Learning a deep convolutional network for light-field image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 24–32 (2015)

    Google Scholar 

  26. Yoon, Y., Jeon, H.G., Yoo, D., Lee, J.Y., Kweon, I.S.: Light-field image super-resolution using convolutional neural network. IEEE Signal Process. Lett. 24(6), 848–852 (2017)

    Article  Google Scholar 

  27. Yuan, Y., Cao, Z., Su, L.: Light-field image superresolution using a combined deep cnn based on EPI. IEEE Signal Process. Lett. 25(9), 1359–1363 (2018)

    Article  Google Scholar 

  28. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  29. Anwar, S., Khan, S., Barnes, N.: A deep journey into super-resolution: a survey. ACM Comput. Surv. 53(3), 1–34 (2020)

    Article  Google Scholar 

  30. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia 21, 3106–3121 (2019)

    Article  Google Scholar 

  31. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1920–1927 (2013)

    Google Scholar 

  32. Jianchao, Y., John, W., Thomas, H., Yi, M.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  33. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  34. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2018)

    Google Scholar 

  35. Bishop, T.E., Favaro, P.: The light field camera: extended depth of field, aliasing, and superresolution. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2011)

    Article  Google Scholar 

  36. Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2013)

    Article  Google Scholar 

  37. Farrugia, R.A., Galea, C., Guillemot, C.: Super resolution of light field images using linear subspace projection of patch-volumes. IEEE J. Sel. Topics Signal Process. 11(7), 1058–1071 (2017)

    Article  Google Scholar 

  38. Egiazarian, K., Katkovnik, V.: Single image super-resolution via bm3d sparse coding. In: European Signal Processing Conference (EUSIPCO), pp. 2849–2853 (2015)

    Google Scholar 

  39. Huang, Y., Wang, W., Wang, L.: Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 235–243 (2015)

    Google Scholar 

  40. Williem, Park, I., Lee, K.M.: Robust light field depth estimation using occlusion-noise aware data costs. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2484–2497 (2018)

    Google Scholar 

  41. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  42. Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation methodology for depth estimation on 4D light fields. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_2

    Chapter  Google Scholar 

  43. Park, I.K., Lee, K.M., et al.: Robust light field depth estimation using occlusion-noise aware data costs. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2484–2497 (2017)

    Google Scholar 

  44. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883 (2016)

    Google Scholar 

  45. Rerabek, M., Ebrahimi, T.: New light field image dataset. In: Proceedings of the International Conference on Quality of Multimedia Experience (QoMEX) (2016)

    Google Scholar 

  46. Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely sampled 4D light fields. In: Vision, Modelling and Visualization (VMV), vol. 13, pp. 225–226. Citeseer (2013)

    Google Scholar 

  47. Le Pendu, M., Jiang, X., Guillemot, C.: Light field inpainting propagation via low rank matrix completion. IEEE Trans. Image Process. 27(4), 1981–1993 (2018)

    Article  MathSciNet  Google Scholar 

  48. Vaish, V., Adams, A.: The (new) stanford light field archive. Comput. Graph. Lab. Stanf. Univ. 6(7) (2008)

    Google Scholar 

  49. Raj, A.S., Lowney, M., Shah, R., Wetzstein, G.: Stanford lytro light field archive (2016)

    Google Scholar 

  50. Anagun, Y., Isik, S., Seke, E.: SRLibrary: comparing different loss functions for super-resolution over various convolutional architectures. J. Vis. Commun. Image Represent. 61, 178–187 (2019)

    Article  Google Scholar 

  51. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  52. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  53. Wang, T.-C., Zhu, J.-Y., Hiroaki, E., Chandraker, M., Efros, A.A., Ramamoorthi, R.: A 4D light-field dataset and cnn architectures for material recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 121–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_8

    Chapter  Google Scholar 

  54. Meng, N., So, H.K.H., Sun, X., Lam, E.: High-dimensional dense residual convolutional neural network for light field reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  55. Meng, N., Wu, X., Liu, J., Lam, E.Y.: High-order residual network for light field super-resolution. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 61972435, 61602499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungang Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1448 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, L., Yang, J., An, W., Yu, J., Guo, Y. (2020). Spatial-Angular Interaction for Light Field Image Super-Resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics