Abstract
Light field (LF) cameras record both intensity and directions of light rays, and capture scenes from a number of viewpoints. Both information within each perspective (i.e., spatial information) and among different perspectives (i.e., angular information) is beneficial to image super-resolution (SR). In this paper, we propose a spatial-angular interactive network (namely, LF-InterNet) for LF image SR. Specifically, spatial and angular features are first separately extracted from input LFs, and then repetitively interacted to progressively incorporate spatial and angular information. Finally, the interacted features are fused to super-resolve each sub-aperture image. Experimental results demonstrate the superiority of LF-InterNet over the state-of-the-art methods, i.e., our method can achieve high PSNR and SSIM scores with low computational cost, and recover faithful details in the reconstructed images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Yang, J., Guo, Y., Xiao, C., An, W.: Selective light field refocusing for camera arrays using bokeh rendering and superresolution. IEEE Signal Process. Lett. 26(1), 204–208 (2018)
Shin, C., Jeon, H.G., Yoon, Y., So Kweon, I., Joo Kim, S.: EPINET: a fully-convolutional neural network using epipolar geometry for depth from light field images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4748–4757 (2018)
Wang, T., Piao, Y., Li, X., Zhang, L., Lu, H.: Deep learning for light field saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 8838–8848 (2019)
Zhang, M., Li, J., WEI, J., Piao, Y., Lu, H.: Memory-oriented decoder for light field salient object detection. In: Advances in Neural Information Processing Systems, pp. 896–906 (2019)
Wang, Y., Wu, T., Yang, J., Wang, L., An, W., Guo, Y.: DeOccNet: learning to see through foreground occlusions in light fields. In: Winter Conference on Applications of Computer Vision (WACV) (2020)
Wilburn, B., et al.: High performance imaging using large camera arrays. ACM Trans. Graph. 24, 765–776 (2005)
Venkataraman, K., et al.: PiCam: an ultra-thin high performance monolithic camera array. ACM Trans. Graph. 32(6), 166 (2013)
Wu, G., Zhao, M., Wang, L., Dai, Q., Chai, T., Liu, Y.: Light field reconstruction using deep convolutional network on EPI. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6319–6327 (2017)
Wu, G., Liu, Y., Dai, Q., Chai, T.: Learning sheared EPI structure for light field reconstruction. IEEE Trans. Image Process. 28(7), 3261–3273 (2019)
Jin, J., Hou, J., Yuan, H., Kwong, S.: Learning light field angular super-resolution via a geometry-aware network. In: AAAI Conference on Artificial Intelligence (2020)
Shi, J., Jiang, X., Guillemot, C.: Learning fused pixel and feature-based view reconstructions for light fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Alain, M., Smolic, A.: Light field super-resolution via lfbm5d sparse coding. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2501–2505 (2018)
Zhang, S., Lin, Y., Sheng, H.: Residual networks for light field image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11046–11055 (2019)
Rossi, M., Frossard, P.: Geometry-consistent light field super-resolution via graph-based regularization. IEEE Trans. Image Process. 27(9), 4207–4218 (2018)
Wang, Y., Liu, F., Zhang, K., Hou, G., Sun, Z., Tan, T.: LFNet: a novel bidirectional recurrent convolutional neural network for light-field image super-resolution. IEEE Trans. Image Process. 27(9), 4274–4286 (2018)
Yeung, H.W.F., Hou, J., Chen, X., Chen, J., Chen, Z., Chung, Y.Y.: Light field spatial super-resolution using deep efficient spatial-angular separable convolution. IEEE Trans. Image Process. 28(5), 2319–2330 (2018)
Jin, J., Hou, J., Chen, J., Kwong, S.: Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 136–144 (2017)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 286–301
Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11065–11074 (2019)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690 (2017)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5
Yoon, Y., Jeon, H.G., Yoo, D., Lee, J.Y., So Kweon, I.: Learning a deep convolutional network for light-field image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 24–32 (2015)
Yoon, Y., Jeon, H.G., Yoo, D., Lee, J.Y., Kweon, I.S.: Light-field image super-resolution using convolutional neural network. IEEE Signal Process. Lett. 24(6), 848–852 (2017)
Yuan, Y., Cao, Z., Su, L.: Light-field image superresolution using a combined deep cnn based on EPI. IEEE Signal Process. Lett. 25(9), 1359–1363 (2018)
Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Anwar, S., Khan, S., Barnes, N.: A deep journey into super-resolution: a survey. ACM Comput. Surv. 53(3), 1–34 (2020)
Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia 21, 3106–3121 (2019)
Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1920–1927 (2013)
Jianchao, Y., John, W., Thomas, H., Yi, M.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2018)
Bishop, T.E., Favaro, P.: The light field camera: extended depth of field, aliasing, and superresolution. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2011)
Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2013)
Farrugia, R.A., Galea, C., Guillemot, C.: Super resolution of light field images using linear subspace projection of patch-volumes. IEEE J. Sel. Topics Signal Process. 11(7), 1058–1071 (2017)
Egiazarian, K., Katkovnik, V.: Single image super-resolution via bm3d sparse coding. In: European Signal Processing Conference (EUSIPCO), pp. 2849–2853 (2015)
Huang, Y., Wang, W., Wang, L.: Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 235–243 (2015)
Williem, Park, I., Lee, K.M.: Robust light field depth estimation using occlusion-noise aware data costs. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2484–2497 (2018)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)
Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation methodology for depth estimation on 4D light fields. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_2
Park, I.K., Lee, K.M., et al.: Robust light field depth estimation using occlusion-noise aware data costs. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2484–2497 (2017)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883 (2016)
Rerabek, M., Ebrahimi, T.: New light field image dataset. In: Proceedings of the International Conference on Quality of Multimedia Experience (QoMEX) (2016)
Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely sampled 4D light fields. In: Vision, Modelling and Visualization (VMV), vol. 13, pp. 225–226. Citeseer (2013)
Le Pendu, M., Jiang, X., Guillemot, C.: Light field inpainting propagation via low rank matrix completion. IEEE Trans. Image Process. 27(4), 1981–1993 (2018)
Vaish, V., Adams, A.: The (new) stanford light field archive. Comput. Graph. Lab. Stanf. Univ. 6(7) (2008)
Raj, A.S., Lowney, M., Shah, R., Wetzstein, G.: Stanford lytro light field archive (2016)
Anagun, Y., Isik, S., Seke, E.: SRLibrary: comparing different loss functions for super-resolution over various convolutional architectures. J. Vis. Commun. Image Represent. 61, 178–187 (2019)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)
Wang, T.-C., Zhu, J.-Y., Hiroaki, E., Chandraker, M., Efros, A.A., Ramamoorthi, R.: A 4D light-field dataset and cnn architectures for material recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 121–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_8
Meng, N., So, H.K.H., Sun, X., Lam, E.: High-dimensional dense residual convolutional neural network for light field reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Meng, N., Wu, X., Liu, J., Lam, E.Y.: High-order residual network for light field super-resolution. In: AAAI Conference on Artificial Intelligence (2020)
Acknowledgement
This work was supported by the National Natural Science Foundation of China (No. 61972435, 61602499).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Wang, L., Yang, J., An, W., Yu, J., Guo, Y. (2020). Spatial-Angular Interaction for Light Field Image Super-Resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-58592-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58591-4
Online ISBN: 978-3-030-58592-1
eBook Packages: Computer ScienceComputer Science (R0)