Nothing Special   »   [go: up one dir, main page]

Skip to main content

Supervised Edge Attention Network for Accurate Image Instance Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

Effectively keeping boundary of the mask complete is important in instance segmentation. In this task, many works segment instance based on a bounding box from the box head, which means the quality of the detection also affects the completeness of the mask. To circumvent this issue, we propose a fully convolutional box head and a supervised edge attention module in mask head. The box head contains one new IoU prediction branch. It learns association between object features and detected bounding boxes to provide more accurate bounding boxes for segmentation. The edge attention module utilizes attention mechanism to highlight object and suppress background noise, and a supervised branch is devised to guide the network to focus on the edge of instances precisely. To evaluate the effectiveness, we conduct experiments on COCO dataset. Without bells and whistles, our approach achieves impressive and robust improvement compared to baseline models. Code is at https://github.com//IPIU-detection/SEANet.

X. Chen and Y. Lian – Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Torr, P.H.S.: Bottom-up instance segmentation using deep higher-order CRFs. In: BMVC. BMVA Press (2016)

    Google Scholar 

  2. Brabandere, B.D., Neven, D., Gool, L.V.: Semantic instance segmentation with a discriminative loss function. CoRR abs/1708.02551 (2017)

    Google Scholar 

  3. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  4. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR, pp. 3150–3158. IEEE Computer Society (2016)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE Computer Society (2009)

    Google Scholar 

  6. Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR, pp. 3146–3154. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  7. Gao, Z., Xie, J., Wang, Q., Li, P.: Global second-order pooling convolutional networks. In: CVPR, pp. 3024–3033. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  8. Hariharan, B., Arbeláez, P.A., Girshick, R.B., Malik, J.: Simultaneous detection and segmentation. In: ECCV

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV, pp. 2980–2988. IEEE Computer Society (2017)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141. IEEE Computer Society (2018)

    Google Scholar 

  11. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: CVPR, pp. 6409–6418. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  12. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confidence for accurate object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 816–832. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_48

    Chapter  Google Scholar 

  13. Kohli, P., Ladicky, L., Torr, P.H.S.: Robust higher order potentials for enforcing label consistency. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA. IEEE Computer Society (2008)

    Google Scholar 

  14. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: beyond anchor-based object detector. CoRR, vol. 2 (2020)

    Google Scholar 

  15. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289. Morgan Kaufmann (2001)

    Google Scholar 

  16. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. CoRR abs/1907.13426 (2019)

    Google Scholar 

  17. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: CVPR, pp. 4438–4446. IEEE Computer Society (2017)

    Google Scholar 

  18. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007. IEEE Computer Society (2017)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440. IEEE Computer Society (2015)

    Google Scholar 

  21. Novotny, D., Albanie, S., Larlus, D., Vedaldi, A.: Semi-convolutional operators for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_6

    Chapter  Google Scholar 

  22. Pinheiro, P.H.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: NIPS, pp. 1990–1998 (2015)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  24. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I.D., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658–666. Computer Vision Foundation / IEEE (2019)

    Google Scholar 

  25. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. CoRR abs/1904.01355 (2019)

    Google Scholar 

  26. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  27. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  28. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: CVPR, pp. 840–849. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the State Key Program of National Natural Science of China (No. 61836009), the National Natural Science Foundation of China (Nos. U1701267, 61871310, 61773304, 61806154, 61802295 and 61801351), the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B07048), the Major Research Plan of the National Natural Science Foundation of China (Nos. 91438201 and 91438103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Lian, Y., Jiao, L., Wang, H., Gao, Y., Lingling, S. (2020). Supervised Edge Attention Network for Accurate Image Instance Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics