Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Low-Light Imaging with Quanta Image Sensors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

Imaging in low light is difficult because the number of photons arriving at the sensor is low. Imaging dynamic scenes in low-light environments is even more difficult because as the scene moves, pixels in adjacent frames need to be aligned before they can be denoised. Conventional CMOS image sensors (CIS) are at a particular disadvantage in dynamic low-light settings because the exposure cannot be too short lest the read noise overwhelms the signal. We propose a solution using Quanta Image Sensors (QIS) and present a new image reconstruction algorithm. QIS are single-photon image sensors with photon counting capabilities. Studies over the past decade have confirmed the effectiveness of QIS for low-light imaging but reconstruction algorithms for dynamic scenes in low light remain an open problem. We fill the gap by proposing a student-teacher training protocol that transfers knowledge from a motion teacher and a denoising teacher to a student network. We show that dynamic scenes can be reconstructed from a burst of frames at a photon level of 1 photon per pixel per frame. Experimental results confirm the advantages of the proposed method compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Aittala, M., Durand, F.: Burst image deblurring using permutation invariant convolutional neural networks. In: ECCV (2018)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: Denoising image sequences does not require motion estimation. In: IEEE Conference Advanced Video and Signal Based Surveillance, pp. 70–74 (2005)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM Multiscale Modeling Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burri, S., Maruyama, Y., Michalet, X., Regazzoni, F., Bruschini, C., Charbon, E.: Architecture and applications of a high resolution gated SPAD image sensor. Optics Express 22(14), 17573–17589 (2014)

    Article  Google Scholar 

  6. Callenberg, C., Lyons, A., den Brok, D., Henderson, R., Hullin, M.B., Faccio, D.: EMCCD-SPAD camera data fusion for high spatial resolution time-of-flight imaging. In: Computational Optical Sensing and Imaging. Optical Society of America (2019)

    Google Scholar 

  7. Chan, S.H., Elgendy, O.A., Wang, X.: Images from bits: non-iterative imagereconstruction for Quanta Image Sensors. Sensors 16(11) (2016)

    Google Scholar 

  8. Chan, S.H., Lu, Y.M.: Efficient image reconstruction for gigapixel Quantum Image Sensors. In: IEEE Global Conference Signal and Information Processing (2014)

    Google Scholar 

  9. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chandramouli, P., Burri, S., Bruschini, C., Charbon, E., Kolb, A.: A bit too much?. In: ICCP, High Speed Imaging from Sparse Photon Counts (2019)

    Google Scholar 

  11. Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: ICCV (2019)

    Google Scholar 

  12. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: CVPR (2018)

    Google Scholar 

  13. Choi, J.H., Elgendy, O.A., Chan, S.H.: Image reconstruction for Quanta Image Sensors using deep neural networks. In: ICASSP (2018)

    Google Scholar 

  14. Chollet, F., et al.: Keras (2015). https://www.keras.io

  15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  16. Davy, A., et al.: A non-local CNN for video denoising. In: ICIP (2019)

    Google Scholar 

  17. Dutton, N.A., et al.: A SPAD-based QVGA image sensor for single-photon counting and quanta imaging. IEEE Trans. Electron Devices 63(1), 189–196 (2015)

    Article  Google Scholar 

  18. Dutton, N.A., Parmesan, L., Holmes, A.J., Grant, L.A., Henderson, R.K.: 320\( \times \)240 oversampled digital single photon counting image sensor. In: Symposium on VLSI Circuits Digest of Technical Papers (2014)

    Google Scholar 

  19. Elgendy, O.A., Chan, S.H.: Optimal threshold design for Quanta Image Sensor. IEEE Trans. Comput. Imaging 4(1), 99–111 (2017)

    Article  MathSciNet  Google Scholar 

  20. Elgendy, O.A., Chan, S.H.: Color Filter Arrays for Quanta Image Sensors. arXiv preprint arXiv:1903.09823 (2019)

  21. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  22. Fossum, E.R.: Gigapixel digital film Sensor (DFS) proposal. In: Nanospace Manipulation of Photons and Electrons for Nanovision Systems (2005)

    Google Scholar 

  23. Fossum, E.R.: Some thoughts on future digital still cameras. In: Image Sensors and Signal Processing for Digital Still Cameras (2006)

    Google Scholar 

  24. Fossum, E.R.: Modeling the performance of single-bit and multi-bit quanta image sensors. IEEE J. Electron Devices Soc. 1(9), 166–174 (2013)

    Article  Google Scholar 

  25. Fu, Q., Jung, C., Xu, K.: Retinex-based perceptual contrast enhancement in images using luminance adaptation. IEEE Access 6, 61277–61286 (2018)

    Article  Google Scholar 

  26. Gariepy, G., et al.: Single-photon sensitive light-in-fight imaging. Nat. Commun. 6(1), 1–7 (2015)

    MathSciNet  Google Scholar 

  27. Gnanasambandam, A., Elgendy, O., Ma, J., Chan, S.H.: Megapixel photon-counting color imaging using Quanta Image Sensor. Optics Express 27(12), 17298–17310 (2019)

    Article  Google Scholar 

  28. Gnanasambandam, A., Ma, J., Chan, S.H.: High dynamic range imaging using Quanta Image Sensors. In: International Image Sensors Workshop (2019)

    Google Scholar 

  29. Godard, C., Matzen, K., Uyttendaele, M.: Deep burst denoising. In: ECCV (2018)

    Google Scholar 

  30. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: ICCV (2009)

    Google Scholar 

  31. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gupta, A., Ingle, A., Gupta, M.: Asynchronous single-photon 3D imaging. In: ICCV (2019)

    Google Scholar 

  33. Gyongy, I., Dutton, N., Henderson, R.: Single-photon tracking for high-speed vision. Sensors 18(2), 323 (2018)

    Article  Google Scholar 

  34. Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. 35(6) (2016)

    Google Scholar 

  35. Horn, B.K., Schunck, B.G.: Determining optical flow. In: Techniques and Applications of Image Understanding, vol. 281. International Society Optics and Photonics (1981)

    Google Scholar 

  36. Hu, Z., Cho, S., Wang, J., Yang, M.H.: Deblurring low-light images with light streaks. In: CVPR (2014)

    Google Scholar 

  37. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: CVPR (2010)

    Google Scholar 

  38. Joshi, N., Cohen, M.: Seeing Mt. Rainier: Lucky imaging for multi-image denoising, sharpening, and haze removal. In: ICCP (2010)

    Google Scholar 

  39. Kokkinos, F., Lefkimmiatis, S.: Iterative residual CNNs for burst photography applications. In: CVPR (2019)

    Google Scholar 

  40. Lindell, D.B., O’Toole, M., Wetzstein, G.: Single-photon 3D imaging with deepsensor fusion. ACM Trans. Graph. 37(4) (2018)

    Google Scholar 

  41. Liu, C., Freeman, W.: A high-quality video denoising algorithm based on reliable motion estimation. In: ECCV (2010)

    Google Scholar 

  42. Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., Sun, J.: Fast burst images denoising. ACM Trans. Graph., 33(6) (2014)

    Google Scholar 

  43. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  44. Ma, J., Fossum, E.: A pump-gate jot device with high conversion gain for a Quanta Image Sensor. IEEE J. Electron Devices Soc. 3(2), 73–77 (2015)

    Article  Google Scholar 

  45. Ma, J., Masoodian, S., Starkey, D., Fossum, E.R.: Photon-number-resolving megapixel image sensor at room temperature without avalanche gain. Optica 4(12), 1474–1481 (2017)

    Article  Google Scholar 

  46. Ma, S., Gupta, S., Ulku, A.C., Brushini, C., Charbon, E., Gupta, M.: Quanta burst photography. ACM Trans. Graph. (TOG), 39(4) (2020)

    Google Scholar 

  47. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Malm, H., Oskarsson, M., Warrant, E., et al.: Adaptive enhancement and noise reduction in very low light-level video. In: ICCV (2007)

    Google Scholar 

  50. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using convolutional auto-encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921 (2016)

  51. Mildenhall, B., et al.: Burst denoising with kernel prediction networks. In: CVPR (2018)

    Google Scholar 

  52. O’Toole, M., Heide, F., Lindell, D.B., Zang, K., Diamond, S., Wetzstein, G.: Reconstructing transient images from single-photon sensors. In: CVPR (2017)

    Google Scholar 

  53. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: CVPR (2017)

    Google Scholar 

  54. Protter, M., Elad, M.: Image sequence denoising via sparse and redundant representations. IEEE Trans. Image Process. 18(1), 27–35 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Remez, T., Litany, O., Bronstein, A.: A picture is worth a billion bits: real-time image reconstruction from dense binary threshold pixels. In: ICCP (2016)

    Google Scholar 

  56. Remez, T., Litany, O., Giryes, R., Bronstein, A.: Deep convolutional denoising of low-light images. arXiv preprint arXiv:1701.01687 (2017)

  57. Sutour, C., Deledalle, C.A., Aujol, J.F.: Adaptive regularization of the NL-means: application to image and video denoising. IEEE Trans. Image Process. 23(8), 3506–3521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided TV-L 1 video interpolation and restoration. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  59. Xia, Z., Perazzi, F., Gharbi, M., Sunkavalli, K., Chakrabarti, A.: Basis prediction networks for effective burst denoising with large kernels. arXiv preprint arXiv:1912.04421 (2019)

  60. Xu, J., Li, H., Liang, Z., et al.: Real-world noisy image denoising: a new benchmark. arXiv preprint arXiv:1804.02603 (2018)

  61. Yang, F., Lu, Y.M., Sbaiz, L., Vetterli, M.: An optimal algorithm for reconstructing images from binary measurements. In: Proceedings SPIE, vol. 7533 (2010)

    Google Scholar 

  62. Yang, F., Lu, Y.M., Sbaiz, L., Vetterli, M.: Bits from photons: oversampled image acquisition using binary poisson statistics. IEEE Trans. Image Process. 21(4), 1421–1436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang, F., Sbaiz, L., Charbon, E., Süsstrunk, S., Vetterli, M.: Image reconstruction in the gigavision camera. In: ICCV Workshops (2009)

    Google Scholar 

  64. Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7) (2017)

    Google Scholar 

  65. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9) (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the US National Science Foundation under grant CCF-1718007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiheng Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi, Y., Gnanasambandam, A., Koltun, V., Chan, S.H. (2020). Dynamic Low-Light Imaging with Quanta Image Sensors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics