Nothing Special   »   [go: up one dir, main page]

Skip to main content

SPAN: Spatial Pyramid Attention Network for Image Manipulation Localization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

We present a novel framework, Spatial Pyramid Attention Network (SPAN) for detection and localization of multiple types of image manipulations. The proposed architecture efficiently and effectively models the relationship between image patches at multiple scales by constructing a pyramid of local self-attention blocks. The design includes a novel position projection to encode the spatial positions of the patches. SPAN is trained on a generic, synthetic dataset but can also be fine tuned for specific datasets; The proposed method shows significant gains in performance on standard datasets over previous state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ISICV/ManTraNet.

References

  1. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. arXiv preprint arXiv:1412.7755 (2014)

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Bappy, J.H., Roy-Chowdhury, A.K., Bunk, J., Nataraj, L., Manjunath, B.: Exploiting spatial structure for localizing manipulated image regions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4970–4979 (2017)

    Google Scholar 

  4. Bappy, J.H., Simons, C., Nataraj, L., Manjunath, B., Roy-Chowdhury, A.K.: Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans. Image Process. 28(7), 3286–3300 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10 (2016)

    Google Scholar 

  6. Bayar, B., Stamm, M.C.: Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 13(11), 2691–2706 (2018)

    Article  Google Scholar 

  7. Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)

    Article  Google Scholar 

  8. Cozzolino, D., Poggi, G., Verdoliva, L.: Splicebuster: a new blind image splicing detector. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)

    Google Scholar 

  9. Dong, J., Wang, W., Tan, T.: Casia image tampering detection evaluation database. In: 2013 IEEE China Summit and International Conference on Signal and Information Processing, pp. 422–426. IEEE (2013)

    Google Scholar 

  10. Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)

    Article  Google Scholar 

  11. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  12. Gloe, T., Böhme, R.: The dresden image database for benchmarking digital image forensics. J. Digit. Forensic Pract. 3(2–4), 150–159 (2010)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  16. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kniaz, V.V., Knyaz, V., Remondino, F.: The point where reality meets fantasy: mixed adversarial generators for image splice detection. In: Advances in Neural Information Processing Systems, pp. 215–226 (2019)

    Google Scholar 

  19. Krawetz, N., Solutions, H.F.: A picture’s worth. Hacker Factor Solutions 6(2), 2 (2007)

    Google Scholar 

  20. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  21. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  23. Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009)

    Article  Google Scholar 

  24. Ng, T.T., Hsu, J., Chang, S.F.: Columbia image splicing detection evaluation dataset. DVMM lab. Columbia Univ CalPhotos Digit Libr (2009)

    Google Scholar 

  25. NIST: NIST nimble 2016 datasets (2016). https://www.nist.gov/itl/iad/mig/

  26. Parmar, N., et al.: Image transformer. arXiv preprint arXiv:1802.05751 (2018)

  27. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)

    Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  29. Salloum, R., Ren, Y., Kuo, C.C.J.: Image splicing localization using a multi-task fully convolutional network (MFCN). J. Vis. Commun. Image Represent. 51, 201–209 (2018)

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  32. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  33. Wen, B., Zhu, Y., Subramanian, R., Ng, T.T., Shen, X., Winkler, S.: Coverage–a novel database for copy-move forgery detection. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 161–165. IEEE (2016)

    Google Scholar 

  34. Wu, Y., Abd-Almageed, W., Natarajan, P.: Deep matching and validation network: an end-to-end solution to constrained image splicing localization and detection. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1480–1502 (2017)

    Google Scholar 

  35. Wu, Y., Abd-Almageed, W., Natarajan, P.: Busternet: detecting copy-move image forgery with source/target localization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 168–184 (2018)

    Google Scholar 

  36. Wu, Y., Abd-Almageed, W., Natarajan, P.: Image copy-move forgery detection via an end-to-end deep neural network. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1907–1915. IEEE (2018)

    Google Scholar 

  37. Wu, Y., AbdAlmageed, W., Natarajan, P.: Mantra-net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9543–9552 (2019)

    Google Scholar 

  38. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  39. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  40. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for image question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 21–29 (2016)

    Google Scholar 

  41. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  42. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1831–1839. IEEE (2017)

    Google Scholar 

  43. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Learning rich features for image manipulation detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1053–1061 (2018)

    Google Scholar 

  44. Zhu, X., Qian, Y., Zhao, X., Sun, B., Sun, Y.: A deep learning approach to patch-based image inpainting forensics. Sig. Process. Image Commun. 67, 90–99 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is based on research sponsored by the Defense Advanced Research Projects Agency under agreement number FA8750-16-2-0204. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government. We thank Arka Sadhu for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 28123 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X., Zhang, Z., Jiang, Z., Chaudhuri, S., Yang, Z., Nevatia, R. (2020). SPAN: Spatial Pyramid Attention Network for Image Manipulation Localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics