Nothing Special   »   [go: up one dir, main page]

Skip to main content

DSDNet: Deep Structured Self-driving Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

In this paper, we propose the Deep Structured self-Driving Network (DSDNet), which performs object detection, motion prediction, and motion planning with a single neural network. Towards this goal, we develop a deep structured energy based model which considers the interactions between actors and produces socially consistent multimodal future predictions. Furthermore, DSDNet explicitly exploits the predicted future distributions of actors to plan a safe maneuver by using a structured planning cost. Our sample-based formulation allows us to overcome the difficulty in probabilistic inference of continuous random variables. Experiments on a number of large-scale self driving datasets demonstrate that our model significantly outperforms the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We would like the samples to cover the original continuous space and have high recall wrt the ground-truth future trajectories.

  2. 2.

    Although the sum-product algorithm is only exact for tree structures, it is shown to work well in practice for graphs with cycles [35, 48].

  3. 3.

    We find that using only \(\mathcal {L}_{planning}\) without the other two terms prevents the model from learning reasonable detection and prediction.

  4. 4.

    Numbers are reported on official validation split, since there is no joint detection and prediction benchmark.

  5. 5.

    [7] replaced the original encoder (taking the ground-truth detection and tracking as input) with a learned CNN that takes LiDAR as input for a fair comparison.

  6. 6.

    We conduct the comparison on the official validation split, as our model currently only focuses on vehicles while the testing benchmark is built for multi-class detection.

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR (2016)

    Google Scholar 

  2. Bandyopadhyay, T., Won, K.S., Frazzoli, E., Hsu, D., Lee, W.S., Rus, D.: Intention-aware motion planning. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp. 475–491. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36279-8_29

    Chapter  Google Scholar 

  3. Belanger, D., McCallum, A.: Structured prediction energy networks. In: ICML (2016)

    Google Scholar 

  4. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv (2016)

    Google Scholar 

  5. Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic (2009)

    Google Scholar 

  6. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv (2019)

    Google Scholar 

  7. Casas, S., Gulino, C., Liao, R., Urtasun, R.: Spatially-aware graph neural networks for relational behavior forecasting from sensor data. arXiv (2019)

    Google Scholar 

  8. Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R.: Implicit latent variable model for scene-consistent motion forecasting. In: ECCV (2020)

    Google Scholar 

  9. Casas, S., Gulino, C., Suo, S., Urtasun, R.: The importance of prior knowledge in precise multimodal prediction. In: IROS (2020)

    Google Scholar 

  10. Casas, S., Luo, W., Urtasun, R.: IntentNet: learning to predict intention from raw sensor data. In: Proceedings of The 2nd Conference on Robot Learning (2018)

    Google Scholar 

  11. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv (2019)

    Google Scholar 

  12. Chen, L.C., Schwing, A., Yuille, A., Urtasun, R.: Learning deep structured models. In: ICML (2015)

    Google Scholar 

  13. Codevilla, F., Miiller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning. In: ICRA (2018)

    Google Scholar 

  14. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: CVPR (2018)

    Google Scholar 

  15. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving simulator. arXiv (2017)

    Google Scholar 

  16. Fan, H., et al.: Baidu apollo em motion planner. arXiv (2018)

    Google Scholar 

  17. Graber, C., Meshi, O., Schwing, A.: Deep structured prediction with nonlinear output transformations. In: NeurIPS (2018)

    Google Scholar 

  18. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  19. Hardy, J., Campbell, M.: Contingency planning over probabilistic obstacle predictions for autonomous road vehicles. IEEE Trans. Robot. D (2013)

    Google Scholar 

  20. Hong, J., Sapp, B., Philbin, J.: Rules of the road: predicting driving behavior with a convolutional model of semantic interactions. In: CVPR (2019)

    Google Scholar 

  21. Ihler, A., McAllester, D.: Particle belief propagation. In: Artificial Intelligence and Statistics (2009)

    Google Scholar 

  22. Jain, A., et al.: Discrete residual flow for probabilistic pedestrian behavior prediction. arXiv (2019)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv (2013)

    Google Scholar 

  24. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  25. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: CVPR (2017)

    Google Scholar 

  26. Li, L., et al.: End-to-end contextual perception and prediction with interaction transformer. In: IROS (2020)

    Google Scholar 

  27. Liang, M., et al.: Learning lane graph representations for motion forecasting. In: ECCV (2020)

    Google Scholar 

  28. Liang, M., et al.: PnPNet: end-to-end perception and prediction with tracking in the loop. In: CVPR (2020)

    Google Scholar 

  29. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net

    Google Scholar 

  30. Manivasagam, S., et al.: LiDARsim: realistic lidar simulation by leveraging the real world. In: CVPR (2020)

    Google Scholar 

  31. Marcos, D., et al.: Learning deep structured active contours end-to-end. In: CVPR (2018)

    Google Scholar 

  32. Min Choi, H., Kang, H., Hyun, Y.: Multi-view reprojection architecture for orientation estimation. In: ICCV (2019)

    Google Scholar 

  33. Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. (2008)

    Google Scholar 

  34. Müller, M., Dosovitskiy, A., Ghanem, B., Koltun, V.: Driving policy transfer via modularity and abstraction. arXiv (2018)

    Google Scholar 

  35. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: an empirical study. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (1999)

    Google Scholar 

  36. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. In: CVPR (2020)

    Google Scholar 

  37. Pomerleau, D.A.: ALVINN: an autonomous land vehicle in a neural network. In: NeurIPS (1989)

    Google Scholar 

  38. Rhinehart, N., Kitani, K.M., Vernaza, P.: r2p2: a reparameterized pushforward policy for diverse, precise generative path forecasting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 794–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_47

    Chapter  Google Scholar 

  39. Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: PRECOG: prediction conditioned on goals in visual multi-agent settings. arXiv (2019)

    Google Scholar 

  40. Sadat, A., Casas, S., Ren, M., Wu, X., Dhawan, P., Urtasun, R.: Perceive, predict, and plan: Safe motion planning through interpretable semantic representations. In: ECCV (2020)

    Google Scholar 

  41. Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.C., Yumer, E., Urtasun, R.: Jointly learnable behavior and trajectory planning for self-driving vehicles. arXiv (2019)

    Google Scholar 

  42. Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: CAR-Net: clairvoyant attentive recurrent network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 162–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_10

    Chapter  Google Scholar 

  43. Schwing, A.G., Urtasun, R.: Fully connected deep structured networks. arXiv (2015)

    Google Scholar 

  44. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NeurIPS (2015)

    Google Scholar 

  45. Sudderth, E.B., Ihler, A.T., Isard, M., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. Commun. ACM (2010)

    Google Scholar 

  46. Tang, Y.C., Salakhutdinov, R.: Multiple futures prediction. arXiv (2019)

    Google Scholar 

  47. Wang, T.H., Manivasagam, S., Liang, M., Yang, B., Zeng, W., Raquel, U.: V2VNET: vehicle-to-vehicle communication for joint perception and prediction. In: ECCV (2020)

    Google Scholar 

  48. Weiss, Y., Pearl, J.: Belief propagation: technical perspective. Commun. ACM (2010)

    Google Scholar 

  49. Wulfmeier, M., Ondruska, P., Posner, I.: Maximum entropy deep inverse reinforcement learning. arXiv (2015)

    Google Scholar 

  50. Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous Markov random fields for robust stereo estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 45–58. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_4

    Chapter  Google Scholar 

  51. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 756–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_49

    Chapter  Google Scholar 

  52. Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3D object detection from point clouds

    Google Scholar 

  53. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. In: Exploring Artificial Intelligence in the New Millennium (2003)

    Google Scholar 

  54. Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., Urtasun, R.: End-to-end interpretable neural motion planner. In: CVPR (2019)

    Google Scholar 

  55. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: ICML (2016)

    Google Scholar 

  56. Zhan, W., Liu, C., Chan, C.Y., Tomizuka, M.: A non-conservatively defensive strategy for urban autonomous driving. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016)

    Google Scholar 

  57. Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: CVPR (2019)

    Google Scholar 

  58. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)

    Google Scholar 

  59. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. arXiv (2019)

    Google Scholar 

  60. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse reinforcement learning. In: AAAI (2008)

    Google Scholar 

  61. Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for bertha–a local, continuous method. In: Intelligent Vehicles Symposium Proceedings, 2014 IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Zeng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1928 KB)

Supplementary material 2 (mp4 51724 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, W., Wang, S., Liao, R., Chen, Y., Yang, B., Urtasun, R. (2020). DSDNet: Deep Structured Self-driving Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics