Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiple Class Novelty Detection Under Data Distribution Shift

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

Abstract

The novelty detection models learn a decision boundary around multiple categories of a given dataset. This helps such models in detecting any novel classes encountered during testing. However, in many cases, the test data distribution can be different from that of the training data. For such cases, the novelty detection models risk detecting a known class as novel due to the dataset distribution shift. This scenario is often ignored while working with novelty detection. To this end, we consider the problem of multiple class novelty detection under dataset distribution shift to improve the novelty detection performance. Firstly, we discuss the problem setting in detail and show how it affects the performance of current novelty detection methods. Secondly, we show that one could improve those novelty detection methods with a simple integration of domain adversarial loss. Finally, we propose a method which brings together the techniques from novelty detection and domain adaptation to improve generalization of multiple class novelty detection on different domains. We evaluate the proposed method on digits and object recognition datasets and show that it provides improvements over the baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amarbayasgalan, T., Jargalsaikhan, B., Ryu, K.H.: Unsupervised novelty detection using deep autoencoders with density based clustering. Appl. Sci. 8(9), 1468 (2018)

    Article  Google Scholar 

  2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in ai safety. arXiv preprint arXiv:1606.06565 (2016)

  3. Baweja, Y., Oza, P., Perera, P., Patel, V.M.: Anomaly detection-based unknown face presentation attack detection. In: International Joint Conference on Biometrics (IJCB), Houston, TX (2020)

    Google Scholar 

  4. Bhattacharjee, S., Mandal, D., Biswas, S.: Multi-class novelty detection using mix-up technique. In: The IEEE Winter Conference on Applications of Computer Vision. pp. 1400–1409 (2020)

    Google Scholar 

  5. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 135–150 (2018)

    Google Scholar 

  6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57. IEEE (2017)

    Google Scholar 

  7. Chen, C., et al.: Novelty detection via non-adversarial generative network. arXiv preprint arXiv:2002.00522 (2020)

  8. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

  9. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3339–3348 (2018)

    Google Scholar 

  10. DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018)

  11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2672–2680 (2014)

    Google Scholar 

  13. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  14. Hoffman, J., et al.: Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  15. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

  16. Hsu, H.K., et al.: Progressive domain adaptation for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1–5 (2019)

    Google Scholar 

  17. Hu, L., Kan, M., Shan, S., Chen, X.: Duplex generative adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1498–1507 (2018)

    Google Scholar 

  18. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  19. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 12456–12465 (2019)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2015)

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems. pp. 1097–1105 (2012)

    Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  23. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database (2010)

    Google Scholar 

  24. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  25. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_13

    Chapter  Google Scholar 

  26. Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. In: 2017 IEEE International Conference on Computer Design (ICCD). pp. 45–48. IEEE (2017)

    Google Scholar 

  27. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems. pp. 136–144 (2016)

    Google Scholar 

  28. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. pp. 2208–2217. JMLR. org (2017)

    Google Scholar 

  29. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  30. Markou, M., Singh, S.: Novelty detection: a review–part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003). 4

    Article  Google Scholar 

  31. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4500–4509 (2018)

    Google Scholar 

  32. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  33. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans. In: Proceedings of the 34th International Conference on Machine Learning. vol. 70. pp. 2642–2651. JMLR. org (2017)

    Google Scholar 

  34. Oza, P., Patel, V.M.: One-class convolutional neural network. IEEE Signal Process. Lett. 26(2), 277–281 (2018)

    Article  Google Scholar 

  35. Oza, P., Patel, V.M.: Utilizing patch-level category activation patterns for multiple class novelty detection. In: European Conference on Computer Vision. Springer (2020)

    Google Scholar 

  36. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 754–763 (2017)

    Google Scholar 

  37. Perera, P., et al.: Generative-discriminative feature representations for open-set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11814–11823 (2020)

    Google Scholar 

  38. Perera, P., Nallapati, R., Xiang, B.: Ocgan: One-class novelty detection using gans with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2898–2906 (2019)

    Google Scholar 

  39. Perera, P., Patel, V.M.: Learning deep features for one-class classification. IEEE Trans. Image Process. 28(11), 5450–5463 (2019)

    Article  MathSciNet  Google Scholar 

  40. Pidhorskyi, S., Almohsen, R., Doretto, G.: Generative probabilistic novelty detection with adversarial autoencoders. In: Advances in Neural Information Processing Systems. pp. 6822–6833 (2018)

    Google Scholar 

  41. Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8004–8013 (2018)

    Google Scholar 

  42. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3379–3388 (2018)

    Google Scholar 

  43. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  44. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3723–3732 (2018)

    Google Scholar 

  45. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8503–8512 (2018)

    Google Scholar 

  46. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, Cambridge (2002)

    Google Scholar 

  47. Shao, R., Perera, P., Yuen, P.C., Patel, V.M.: Open-set adversarial defense. In: European Conference on Computer Vision. (2020)

    Google Scholar 

  48. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A dirt-t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735 (2018)

  49. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  50. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7472–7481 (2018)

    Google Scholar 

  51. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 586–587 (1991)

    Google Scholar 

  52. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7167–7176 (2017)

    Google Scholar 

  53. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2720–2729 (2019)

    Google Scholar 

  54. Zhang, H., Patel, V.M.: Sparse representation-based open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1690–1696 (2016)

    Article  Google Scholar 

  55. Zhang, Y., David, P., Foroosh, H., Gong, B.: A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the NSF grant 1910141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poojan Oza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1006 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oza, P., Nguyen, H.V., Patel, V.M. (2020). Multiple Class Novelty Detection Under Data Distribution Shift. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics