Nothing Special   »   [go: up one dir, main page]

Skip to main content

What Makes Fake Images Detectable? Understanding Properties that Generalize

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12371))

Included in the following conference series:

Abstract

The quality of image generation and manipulation is reaching impressive levels, making it increasingly difficult for a human to distinguish between what is real and what is fake. However, deep networks can still pick up on the subtle artifacts in these doctored images. We seek to understand what properties of fake images make them detectable and identify what generalizes across different model architectures, datasets, and variations in training. We use a patch-based classifier with limited receptive fields to visualize which regions of fake images are more easily detectable. We further show a technique to exaggerate these detectable properties and demonstrate that, even when the image generator is adversarially finetuned against a fake image classifier, it is still imperfect and leaves detectable artifacts in certain image patches. Code is available at https://github.com/chail/patch-forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.bbc.com/future/article/20170629-the-hidden-signs-that-can-reveal-if-a-photo-is-fake.

  2. 2.

    https://en.wikipedia.org/wiki/Censorship_of_images_in_the_Soviet_Union.

References

  1. Deepfakes.https://github.com/deepfakes/faceswap

  2. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7. IEEE (2018)

    Google Scholar 

  3. Bau, D., et al.: Seeing what a GAN cannot generate. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4502–4511 (2019)

    Google Scholar 

  4. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10 (2016)

    Google Scholar 

  5. Carlini, N., Farid, H.: Evading deepfake-image detectors with white-and black-box attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 658–659 (2020)

    Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  7. Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164 (2017)

    Google Scholar 

  8. Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: ForensicTransfer: weakly-supervised domain adaptation for forgery detection. arXiv preprint arXiv:1812.02510 (2018)

  9. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  10. Goetschalckx, L., Andonian, A., Oliva, A., Isola, P.: GANalyze: toward visual definitions of cognitive image properties. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5744–5753 (2019)

    Google Scholar 

  11. Gragnaniello, D., Marra, F., Poggi, G., Verdoliva, L.: Analysis of adversarial attacks against CNN-based image forgery detectors. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 967–971. IEEE (2018)

    Google Scholar 

  12. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph. (TOG) 26(3), 4-es (2007)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 106–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_7

    Chapter  Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  16. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  17. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  18. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. arXiv preprint arXiv:1912.04958 (2019)

  19. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, pp. 10215–10224 (2018)

    Google Scholar 

  20. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  21. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001–5010 (2020)

    Google Scholar 

  22. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018)

  23. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  25. Mayer, O., Stamm, M.C.: Exposing fake images with forensic similarity graphs. arXiv preprint arXiv:1912.02861 (2019)

  26. Mo, H., Chen, B., Luo, W.: Fake faces identification via convolutional neural network. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 43–47 (2018)

    Google Scholar 

  27. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Dept. Comput. Sci., Dartmouth College, Technical report TR2004-515 pp. 1–11 (2004)

    Google Scholar 

  28. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  Google Scholar 

  29. Popescu, A.C., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Trans. Signal Process. 53(10), 3948–3959 (2005)

    Article  MathSciNet  Google Scholar 

  30. Rahmouni, N., Nozick, V., Yamagishi, J., Echizen, I.: Distinguishing computer graphics from natural images using convolution neural networks. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2017)

    Google Scholar 

  31. Richardson, E., Weiss, Y.: On GANs and GMMs. In: Advances in Neural Information Processing Systems, pp. 5847–5858 (2018)

    Google Scholar 

  32. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–11 (2019)

    Google Scholar 

  33. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. arXiv preprint arXiv:1912.11035 (2019)

  34. Xuan, X., Peng, B., Wang, W., Dong, J.: On the generalization of GAN image forensics. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds.) CCBR 2019. LNCS, vol. 11818, pp. 134–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31456-9_15

    Chapter  Google Scholar 

  35. Yu, N., Davis, L.S., Fritz, M.: Attributing fake images to GANs: learning and analyzing GAN fingerprints. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7556–7566 (2019)

    Google Scholar 

  36. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 586–595 (2018)

    Google Scholar 

  37. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN fake images. arXiv preprint arXiv:1907.06515 (2019)

  38. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1831–1839. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Antonio Torralba, Jonas Wulff, Jacob Huh, Tongzhou Wang, Harry Yang, and Richard Zhang for helpful discussions. This work was supported by a National Science Foundation Graduate Research Fellowship under Grant No. 1122374 to L.C. and DARPA XAI FA8750-18-C000-4 to D.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Chai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2236 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chai, L., Bau, D., Lim, SN., Isola, P. (2020). What Makes Fake Images Detectable? Understanding Properties that Generalize. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58574-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58573-0

  • Online ISBN: 978-3-030-58574-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics