Nothing Special   »   [go: up one dir, main page]

Skip to main content

SSCGAN: Facial Attribute Editing via Style Skip Connections

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Included in the following conference series:

Abstract

Existing facial attribute editing methods typically employ an encoder-decoder architecture where the attribute information is expressed as a conditional one-hot vector spatially concatenated with the image or intermediate feature maps. However, such operations only learn the local semantic mapping but ignore global facial statistics. In this work, we focus on solving this issue by editing the channel-wise global information denoted as the style feature. We develop a style skip connection based generative adversarial network, referred to as SSCGAN which enables accurate facial attribute manipulation. Specifically, we inject the target attribute information into multiple style skip connection paths between the encoder and decoder. Each connection extracts the style feature of the latent feature maps in the encoder and then performs a residual learning based mapping function in the global information space guided by the target attributes. In the following, the adjusted style feature will be utilized as the conditional information for instance normalization to transform the corresponding latent feature maps in the decoder. In addition, to avoid the vanishing of spatial details (e.g. hairstyle or pupil locations), we further introduce the skip connection based spatial information transfer module. Through the global-wise style and local-wise spatial information manipulation, the proposed method can produce better results in terms of attribute generation accuracy and image quality. Experimental results demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: ICCV (2019)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML (2017)

    Google Scholar 

  3. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: CVPR (2018)

    Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  5. Chang, H., Lu, J., Yu, F., Finkelstein, A.: Pairedcyclegan: asymmetric style transfer for applying and removing makeup. In: CVPR (2018)

    Google Scholar 

  6. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  9. He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: AttGAN: facial attribute editing by only changing what you want. IEEE Trans. Image Process. 28(11), 5464–5478 (2019)

    Article  MathSciNet  Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS, pp. 6626–6637 (2017)

    Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  12. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp. 2439–2448 (2017)

    Google Scholar 

  13. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  14. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)

    Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  19. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: ECCV (2018)

    Google Scholar 

  22. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer (2017)

    Google Scholar 

  23. Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: CVPR (2019)

    Google Scholar 

  24. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)

    Google Scholar 

  25. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV (2019)

    Google Scholar 

  26. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  27. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  28. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  29. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML (2017)

    Google Scholar 

  30. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)

  33. Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: Ganimation: anatomically-aware facial animation from a single image. In: ECCV (2018)

    Google Scholar 

  34. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. arXiv preprint arXiv:1907.10786 (2019)

  35. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  36. Wu, P.W., Lin, Y.J., Chang, C.H., Chang, E.Y., Liao, S.W.: ReLGAN: multi-domain image-to-image translation via relative attributes. In: ICCV (2019)

    Google Scholar 

  37. Xiao, T., Hong, J., Ma, J.: ELEGANT: exchanging latent encodings with GAN for transferring multiple face attributes. In: ECCV (2018)

    Google Scholar 

  38. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. arXiv preprint arXiv:1905.08233 (2019)

  39. Zhang, G., Kan, M., Shan, S., Chen, X.: Generative adversarial network with spatial attention for face attribute editing. In: ECCV (2018)

    Google Scholar 

  40. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  41. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, W., Tai, Y., Wang, C., Li, J., Huang, F., Ji, R. (2020). SSCGAN: Facial Attribute Editing via Style Skip Connections. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics