Abstract
Existing facial attribute editing methods typically employ an encoder-decoder architecture where the attribute information is expressed as a conditional one-hot vector spatially concatenated with the image or intermediate feature maps. However, such operations only learn the local semantic mapping but ignore global facial statistics. In this work, we focus on solving this issue by editing the channel-wise global information denoted as the style feature. We develop a style skip connection based generative adversarial network, referred to as SSCGAN which enables accurate facial attribute manipulation. Specifically, we inject the target attribute information into multiple style skip connection paths between the encoder and decoder. Each connection extracts the style feature of the latent feature maps in the encoder and then performs a residual learning based mapping function in the global information space guided by the target attributes. In the following, the adjusted style feature will be utilized as the conditional information for instance normalization to transform the corresponding latent feature maps in the decoder. In addition, to avoid the vanishing of spatial details (e.g. hairstyle or pupil locations), we further introduce the skip connection based spatial information transfer module. Through the global-wise style and local-wise spatial information manipulation, the proposed method can produce better results in terms of attribute generation accuracy and image quality. Experimental results demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: ICCV (2019)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML (2017)
Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: CVPR (2018)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)
Chang, H., Lu, J., Yu, F., Finkelstein, A.: Pairedcyclegan: asymmetric style transfer for applying and removing makeup. In: CVPR (2018)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: AttGAN: facial attribute editing by only changing what you want. IEEE Trans. Image Process. 28(11), 5464–5478 (2019)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS, pp. 6626–6637 (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception gan for photorealistic and identity preserving frontal view synthesis. In: ICCV, pp. 2439–2448 (2017)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: ECCV (2018)
Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer (2017)
Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: CVPR (2019)
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)
Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV (2019)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)
Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML (2017)
Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)
Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: Ganimation: anatomically-aware facial animation from a single image. In: ECCV (2018)
Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. arXiv preprint arXiv:1907.10786 (2019)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)
Wu, P.W., Lin, Y.J., Chang, C.H., Chang, E.Y., Liao, S.W.: ReLGAN: multi-domain image-to-image translation via relative attributes. In: ICCV (2019)
Xiao, T., Hong, J., Ma, J.: ELEGANT: exchanging latent encodings with GAN for transferring multiple face attributes. In: ECCV (2018)
Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. arXiv preprint arXiv:1905.08233 (2019)
Zhang, G., Kan, M., Shan, S., Chen, X.: Generative adversarial network with spatial attention for face attribute editing. In: ECCV (2018)
Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chu, W., Tai, Y., Wang, C., Li, J., Huang, F., Ji, R. (2020). SSCGAN: Facial Attribute Editing via Style Skip Connections. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-58555-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58554-9
Online ISBN: 978-3-030-58555-6
eBook Packages: Computer ScienceComputer Science (R0)