Nothing Special   »   [go: up one dir, main page]

Skip to main content

Particularity Beyond Commonality: Unpaired Identity Transfer with Multiple References

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

  • 5351 Accesses

Abstract

Unpaired image-to-image translation aims to translate images from the source class to target one by providing sufficient data for these classes. Current few-shot translation methods use multiple reference images to describe the target domain through extracting common features. In this paper, we focus on a more specific identity transfer problem and advocate that particular property in each individual image can also benefit generation. We accordingly propose a new multi-reference identity transfer framework by simultaneously making use of particularity and commonality of reference. It is achieved via a semantic pyramid alignment module to make proper use of geometric information for individual images, as well as an attention module to aggregate for the final transformation. Extensive experiments demonstrate the effectiveness of our framework given the promising results in a number of identity transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aberman, K., Liao, J., Shi, M., Lischinski, D., Chen, B., Cohen-Or, D.: Neural best-buddies: sparse cross-domain correspondence. ACM Trans. Graph. 37, 1–14 (2018)

    Article  Google Scholar 

  2. Averbuch-Elor, H., Cohen-Or, D., Kopf, J., Cohen, M.F.: Bringing portraits to life. ACM Trans. Graph. 36, 1–13 (2017)

    Article  Google Scholar 

  3. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: CVPR (2018)

    Google Scholar 

  4. Benaim, S., Wolf, L.: One-shot unsupervised cross domain translation. In: NeurIPS (2018)

    Google Scholar 

  5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) (2018)

    Google Scholar 

  6. Chen, Y.C., Xu, X., Tian, Z., Jia, J.: Homomorphic latent space interpolation for unpaired image-to-image translation. In: CVPR (2019)

    Google Scholar 

  7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)

    Google Scholar 

  8. Dong, H., Liang, X., Gong, K., Lai, H., Zhu, J., Yin, J.: Soft-gated warping-GAN for pose-guided person image synthesis. In: NeurIPS (2018)

    Google Scholar 

  9. Fu, C., Hu, Y., Wu, X., Wang, G., Zhang, Q., He, R.: High fidelity face manipulation with extreme pose and expression. arXiv preprint arXiv:1903.12003 (2019)

  10. Ganin, Y., Kononenko, D., Sungatullina, D., Lempitsky, V.: DeepWarp: photorealistic image resynthesis for gaze manipulation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 311–326. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_20

    Chapter  Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  12. Geng, J., Shao, T., Zheng, Y., Weng, Y., Zhou, K.: Warp-guided GANs for single-photo facial animation. In: SIGGRAPH Asia 2018 Technical Papers (2018)

    Google Scholar 

  13. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image Vis. Comput. 28, 807–813 (2010)

    Article  Google Scholar 

  14. Ha, S., Kersner, M., Kim, B., Seo, S., Kim, D.: MarioNETte: few-shot face reenactment preserving identity of unseen targets. In: AAAI (2020)

    Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)

  16. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: ICCV (2017)

    Google Scholar 

  17. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. arXiv preprint arXiv:1804.04732 (2018)

  18. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H., Hawk, S.T., Van Knippenberg, A.: Presentation and validation of the radboud faces database. Cogn. Emot. 24, 377–1388 (2010)

    Article  Google Scholar 

  21. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3

    Chapter  Google Scholar 

  22. Li, M., Zuo, W., Zhang, D.: Deep identity-aware transfer of facial attributes. arXiv preprint arXiv:1610.05586 (2016)

  23. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. ACM Trans. Graph. (TOG) 36(4), 1–15 (2017)

    Google Scholar 

  24. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NeurIPS (2017)

    Google Scholar 

  25. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV (2019)

    Google Scholar 

  26. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NeurIPS (2016)

    Google Scholar 

  27. Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping GAN: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: ICCV (2019)

    Google Scholar 

  28. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)

    Google Scholar 

  29. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  30. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. arXiv preprint arXiv:1712.00479 (2017)

  31. Natsume, R., Yatagawa, T., Morishima, S.: FSNet: an identity-aware generative model for image-based face swapping. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 117–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_8

    Chapter  Google Scholar 

  32. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)

    Google Scholar 

  33. Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: GANimation: anatomically-aware facial animation from a single image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 835–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_50

    Chapter  Google Scholar 

  34. Qian, S., et al.: Make a face: towards arbitrary high fidelity face manipulation. In: ICCV (2019)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Shu, Z., Sahasrabudhe, M., Alp Güler, R., Samaras, D., Paragios, N., Kokkinos, I.: Deforming autoencoders: unsupervised disentangling of shape and appearance. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 664–680. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_40

    Chapter  Google Scholar 

  37. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: NeurIPS (2019)

    Google Scholar 

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  39. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  40. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. arXiv preprint arXiv:1611.02200 (2016)

  41. Tripathy, S., Kannala, J., Rahtu, E.: ICface: interpretable and controllable face reenactment using GANs. arXiv preprint arXiv:1904.01909 (2019)

  42. Wang, T.C., Liu, M.Y., Tao, A., Liu, G., Kautz, J., Catanzaro, B.: Few-shot video-to-video synthesis. In: NeurIPS (2019)

    Google Scholar 

  43. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  44. Wiles, O., Koepke, A.S., Zisserman, A.: X2Face: a network for controlling face generation using images, audio, and pose codes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_41

    Chapter  Google Scholar 

  45. Wolf, L., Taigman, Y., Polyak, A.: Unsupervised creation of parameterized avatars. In: ICCV (2017)

    Google Scholar 

  46. Wu, R., Tao, X., Gu, X., Shen, X., Jia, J.: Attribute-driven spontaneous motion in unpaired image translation. In: ICCV (2019)

    Google Scholar 

  47. Wu, W., Cao, K., Li, C., Qian, C., Loy, C.C.: TransGaGa: geometry-aware unsupervised image-to-image translation. In: CVPR (2019)

    Google Scholar 

  48. Wu, W., Zhang, Y., Li, C., Qian, C., Loy, C.C.: ReenactGAN: learning to reenact faces via boundary transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 622–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_37

    Chapter  Google Scholar 

  49. Yi, P., Wang, Z., Jiang, K., Jiang, J., Ma, J.: Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: ICCV (2019)

    Google Scholar 

  50. Yi, Z., Zhang, H.R., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: ICCV (2017)

    Google Scholar 

  51. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. arXiv preprint arXiv:1905.08233 (2019)

  52. Zhan, F., Zhu, H., Lu, S.: Spatial fusion GAN for image synthesis. In: CVPR (2019)

    Google Scholar 

  53. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: ICML (2019)

    Google Scholar 

  54. Zhang, Y., Zhang, S., He, Y., Li, C., Loy, C.C., Liu, Z.: One-shot face reenactment. In: BMVC (2019)

    Google Scholar 

  55. Zhou, H., Liu, Y., Liu, Z., Luo, P., Wang, X.: Talking face generation by adversarially disentangled audio-visual representation. In: AAAI (2019)

    Google Scholar 

  56. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  57. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  58. Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention transfer for person image generation. In: CVPR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizheng Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9884 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, R., Tao, X., Chen, Y., Shen, X., Jia, J. (2020). Particularity Beyond Commonality: Unpaired Identity Transfer with Multiple References. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics