Nothing Special   »   [go: up one dir, main page]

Skip to main content

SPL-MLL: Selecting Predictable Landmarks for Multi-label Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12354))

Included in the following conference series:

Abstract

Although significant progress achieved, multi-label classification is still challenging due to the complexity of correlations among different labels. Furthermore, modeling the relationships between input and some (dull) classes further increases the difficulty of accurately predicting all possible labels. In this work, we propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative). Different from existing methods which separate the landmark selection and landmark prediction in the 2-step manner, the proposed algorithm, termed Selecting Predictable Landmarks for Multi-Label Learning (SPL-MLL), jointly conducts landmark selection, landmark prediction, and label recovery in a unified framework, to ensure both the representativeness and predictableness for selected landmarks. We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mulan.sourceforge.net/datasets-mlc.html.

  2. 2.

    http://lear.inrialpes.fr/people/guillaumin/data.php.

References

  1. Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: International Conference on Machine Learning (2012)

    Google Scholar 

  2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, pp. 730–738 (2015)

    Google Scholar 

  3. Bi, W., Kwok, J.: Efficient multi-label classification with many labels. In: International Conference on Machine Learning, pp. 405–413 (2013)

    Google Scholar 

  4. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  5. Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for the column subset selection problem. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977. SIAM (2009)

    Google Scholar 

  6. Charte, F., Rivera, A., del Jesus, M., Herrera, F.: Multilabel classification. Problem analysis, metrics and techniques book repository

    Google Scholar 

  7. Chen, Y.N., Lin, H.T.: Feature-aware label space dimension reduction for multi-label classification. In: Advances in Neural Information Processing Systems, pp. 1529–1537 (2012)

    Google Scholar 

  8. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in neural Information Processing Systems, pp. 681–687 (2002)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  10. Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

    Article  Google Scholar 

  11. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200. ACM (2005)

    Google Scholar 

  12. Hou, P., Geng, X., Zhang, M.L.: Multi-label manifold learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  13. Hsu, D.J., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, pp. 772–780 (2009)

    Google Scholar 

  14. Ji, S., Tang, L., Yu, S., Ye, J.: A shared-subspace learning framework for multi-label classification. ACM Trans. Knowl. Discov. Data (TKDD) 4(2), 8 (2010)

    Google Scholar 

  15. Jia, X., Zheng, X., Li, W., Zhang, C., Li, Z.: Facial emotion distribution learning by exploiting low-rank label correlations locally. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9841–9850 (2019)

    Google Scholar 

  16. Li, X., Guo, Y.: Multi-label classification with feature-aware non-linear label space transformation. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  17. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in Neural Information Processing Systems, pp. 612–620 (2011)

    Google Scholar 

  18. Lin, Z., Ding, G., Hu, M., Wang, J.: Multi-label classification via feature-aware implicit label space encoding. In: International Conference on Machine Learning, pp. 325–333 (2014)

    Google Scholar 

  19. Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text classification. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–124. ACM (2017)

    Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2008)

    Google Scholar 

  22. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ren, T., Jia, X., Li, W., Zhao, S.: Label distribution learning with label correlations via low-rank approximation. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3325–3331. AAAI Press (2019)

    Google Scholar 

  24. Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tang, L., Rajan, S., Narayanan, V.K.: Large scale multi-label classification via metalabeler. In: Proceedings of the 18th International Conference on World Wide Web, pp. 211–220. ACM (2009)

    Google Scholar 

  26. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: ISMIR, vol. 8, pp. 325–330 (2008)

    Google Scholar 

  27. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. (IJDWM) 3(3), 1–13 (2007)

    Article  Google Scholar 

  28. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  29. Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326. ACM (2004)

    Google Scholar 

  30. Wu, B., Chen, W., Sun, P., Liu, W., Ghanem, B., Lyu, S.: Tagging like humans: diverse and distinct image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7967–7975 (2018)

    Google Scholar 

  31. Wu, B., Jia, F., Liu, W., Ghanem, B.: Diverse image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2559–2567 (2017)

    Google Scholar 

  32. Wu, B., Jia, F., Liu, W., Ghanem, B., Lyu, S.: Multi-label learning with missing labels using mixed dependency graphs. Int. J. Comput. Vis. 126(8), 875–896 (2018)

    Article  MathSciNet  Google Scholar 

  33. Yeh, C.K., Wu, W.C., Ko, W.J., Wang, Y.C.F.: Learning deep latent space for multi-label classification. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  34. Yu, H.F., Jain, P., Kar, P., Dhillon, I.: Large-scale multi-label learning with missing labels. In: International Conference on Machine Learning, pp. 593–601 (2014)

    Google Scholar 

  35. Zhang, C., Yu, Z., Fu, H., Zhu, P., Chen, L., Hu, Q.: Hybrid noise-oriented multilabel learning. IEEE Trans. Cybern. 50, 2837–2850 (2019)

    Article  Google Scholar 

  36. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  37. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  38. Zhang, Q.W., Zhong, Y., Zhang, M.L.: Feature-induced labeling information enrichment for multi-label learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  39. Zhang, Y., Schneider, J.: Maximum margin output coding. arXiv preprint arXiv:1206.6478 (2012)

  40. Zhou, T., Tao, D., Wu, X.: Compressed labeling on distilled labelsets for multi-label learning. Mach. Learn. 88(1–2), 69–126 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61976151, 61732011 and 61872190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Zhang, C., Zhu, P., Wu, B., Chen, L., Hu, Q. (2020). SPL-MLL: Selecting Predictable Landmarks for Multi-label Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics