Abstract
Although significant progress achieved, multi-label classification is still challenging due to the complexity of correlations among different labels. Furthermore, modeling the relationships between input and some (dull) classes further increases the difficulty of accurately predicting all possible labels. In this work, we propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative). Different from existing methods which separate the landmark selection and landmark prediction in the 2-step manner, the proposed algorithm, termed Selecting Predictable Landmarks for Multi-Label Learning (SPL-MLL), jointly conducts landmark selection, landmark prediction, and label recovery in a unified framework, to ensure both the representativeness and predictableness for selected landmarks. We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: International Conference on Machine Learning (2012)
Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, pp. 730–738 (2015)
Bi, W., Kwok, J.: Efficient multi-label classification with many labels. In: International Conference on Machine Learning, pp. 405–413 (2013)
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for the column subset selection problem. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977. SIAM (2009)
Charte, F., Rivera, A., del Jesus, M., Herrera, F.: Multilabel classification. Problem analysis, metrics and techniques book repository
Chen, Y.N., Lin, H.T.: Feature-aware label space dimension reduction for multi-label classification. In: Advances in Neural Information Processing Systems, pp. 1529–1537 (2012)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in neural Information Processing Systems, pp. 681–687 (2002)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)
Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200. ACM (2005)
Hou, P., Geng, X., Zhang, M.L.: Multi-label manifold learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
Hsu, D.J., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, pp. 772–780 (2009)
Ji, S., Tang, L., Yu, S., Ye, J.: A shared-subspace learning framework for multi-label classification. ACM Trans. Knowl. Discov. Data (TKDD) 4(2), 8 (2010)
Jia, X., Zheng, X., Li, W., Zhang, C., Li, Z.: Facial emotion distribution learning by exploiting low-rank label correlations locally. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9841–9850 (2019)
Li, X., Guo, Y.: Multi-label classification with feature-aware non-linear label space transformation. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in Neural Information Processing Systems, pp. 612–620 (2011)
Lin, Z., Ding, G., Hu, M., Wang, J.: Multi-label classification via feature-aware implicit label space encoding. In: International Conference on Machine Learning, pp. 325–333 (2014)
Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text classification. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–124. ACM (2017)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2008)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)
Ren, T., Jia, X., Li, W., Zhao, S.: Label distribution learning with label correlations via low-rank approximation. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3325–3331. AAAI Press (2019)
Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012)
Tang, L., Rajan, S., Narayanan, V.K.: Large scale multi-label classification via metalabeler. In: Proceedings of the 18th International Conference on World Wide Web, pp. 211–220. ACM (2009)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: ISMIR, vol. 8, pp. 325–330 (2008)
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. (IJDWM) 3(3), 1–13 (2007)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)
Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326. ACM (2004)
Wu, B., Chen, W., Sun, P., Liu, W., Ghanem, B., Lyu, S.: Tagging like humans: diverse and distinct image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7967–7975 (2018)
Wu, B., Jia, F., Liu, W., Ghanem, B.: Diverse image annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2559–2567 (2017)
Wu, B., Jia, F., Liu, W., Ghanem, B., Lyu, S.: Multi-label learning with missing labels using mixed dependency graphs. Int. J. Comput. Vis. 126(8), 875–896 (2018)
Yeh, C.K., Wu, W.C., Ko, W.J., Wang, Y.C.F.: Learning deep latent space for multi-label classification. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Yu, H.F., Jain, P., Kar, P., Dhillon, I.: Large-scale multi-label learning with missing labels. In: International Conference on Machine Learning, pp. 593–601 (2014)
Zhang, C., Yu, Z., Fu, H., Zhu, P., Chen, L., Hu, Q.: Hybrid noise-oriented multilabel learning. IEEE Trans. Cybern. 50, 2837–2850 (2019)
Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Zhang, Q.W., Zhong, Y., Zhang, M.L.: Feature-induced labeling information enrichment for multi-label learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Zhang, Y., Schneider, J.: Maximum margin output coding. arXiv preprint arXiv:1206.6478 (2012)
Zhou, T., Tao, D., Wu, X.: Compressed labeling on distilled labelsets for multi-label learning. Mach. Learn. 88(1–2), 69–126 (2012)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Nos. 61976151, 61732011 and 61872190).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, J., Zhang, C., Zhu, P., Wu, B., Chen, L., Hu, Q. (2020). SPL-MLL: Selecting Predictable Landmarks for Multi-label Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-58545-7_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58544-0
Online ISBN: 978-3-030-58545-7
eBook Packages: Computer ScienceComputer Science (R0)