Abstract
Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry. Then, there is a lot of problems relative to this subject, like the benzenoid generation or the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this context, the computation of the local aromaticity of a given benzenoid is an important problematic since the aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. But, there exist some methods related to graph theory which can allow us to compute it. In this article, we describe how constraint programming can be useful in order to compute the aromaticity of benzenoids. Moreover we show that our method is much faster than the reference one, namely NICS.
This work has been funded by the Agence Nationale de la Recherche project ANR-16-C40-0028.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., von Ragué Schleyer, P.: Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005)
Clar, E., Schoental, R.: Polycyclic Hydrocarbons, vol. 1. Springer, Berlin (1964). https://doi.org/10.1007/978-3-662-01665-7
Draine, B.T.: Astronomical models of PAHs and Dust. EAS Publ. Ser. 46, 29–42 (2011). https://doi.org/10.1051/eas/1146003
Fages, J.G., Lorca, X., Prud’homme, C.: Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/
Fages, J.: Exploitation de structures de graphe en programmation par contraintes. Ph.D. thesis, École des mines de Nantes, France (2014)
Hansen, P., Zheng, M.: A linear algorithm for perfect matching in hexagonal systems. Discrete Math. 122, 179–196 (1993)
Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 70, 204–286 (1931). https://doi.org/10.1007/BF01339530
Kekulé, A.: Untersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungen. Justus Liebigs Annalen der Chemie 137(2), 129–196 (1866). https://doi.org/10.1002/jlac.18661370202
Lin, C.: Efficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuits. J. Chem. Inf. Comput. Sci. 40, 778–783 (2000)
Lin, C., Fan, G.: Algorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci 39, 782–787 (1999)
Luch, A.: The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press, London (2005). https://doi.org/10.1142/p306
Mann, M., Thiel, B.: Kekulé structures enumeration yields unique SMILES. In: Proceedings of Workshop on Constraint Based Methods for Bioinformatics (2013)
Narita, A., Wang, X.Y., Feng, X., Müllen, K.: New advances in nanographene chemistry. Chem. Soc. Rev. 44(18), 6616–6643 (2015). https://doi.org/10.1039/C5CS00183H
Randić, M.: Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68–70 (1976). https://doi.org/10.1016/0009-2614(76)80257-6
Randić, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103(9), 3449–3606 (2003). https://doi.org/10.1021/cr9903656
Randić, M.: Benzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbons. J. Comput. Chem. 40(5), 753–762 (2019)
Randić, M., Balaban, A.T.: Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem. 108(17), e25657 (2018). https://doi.org/10.1002/qua.25657
Randić, M., Guo, X.: Recursive method for enumeration of linearly independent and minimal conjugated circuits of benzenoid hydrocarbons. J. Chem. Inf. Model. 34(2), 339–348 (1994)
Randić, M., Guo, X., Klein, D.J.: Analytical expressions for the count of LM-conjugated circuits of benzenoid hydrocarbons. Int. J. Quantum Chem. 60, 943–958 (1996)
Rieger, R., Müllen, K.: Forever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J. Phys. Org. Chem. 23(4), 315–325 (2010). https://doi.org/10.1002/poc.1644
Rispoli, F.J.: Counting perfect matchings in hexagonal systems associated with benzenoids. Math. Mag. 14, 194–200 (2001)
Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)
Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI, pp. 362–367 (1994)
Wu, J., Pisula, W., Müllen, K.: Graphenes as potential material for electronics. Chem. Rev. 107(3), 718–747 (2007). https://doi.org/10.1021/cr068010r
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Carissan, Y., Dim, CA., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., Varet, A. (2020). Computing the Local Aromaticity of Benzenoids Thanks to Constraint Programming. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-58475-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58474-0
Online ISBN: 978-3-030-58475-7
eBook Packages: Computer ScienceComputer Science (R0)