Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing the Local Aromaticity of Benzenoids Thanks to Constraint Programming

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Abstract

Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry. Then, there is a lot of problems relative to this subject, like the benzenoid generation or the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this context, the computation of the local aromaticity of a given benzenoid is an important problematic since the aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. But, there exist some methods related to graph theory which can allow us to compute it. In this article, we describe how constraint programming can be useful in order to compute the aromaticity of benzenoids. Moreover we show that our method is much faster than the reference one, namely NICS.

This work has been funded by the Agence Nationale de la Recherche project ANR-16-C40-0028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., von Ragué Schleyer, P.: Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005)

    Article  Google Scholar 

  2. Clar, E., Schoental, R.: Polycyclic Hydrocarbons, vol. 1. Springer, Berlin (1964). https://doi.org/10.1007/978-3-662-01665-7

    Book  Google Scholar 

  3. Draine, B.T.: Astronomical models of PAHs and Dust. EAS Publ. Ser. 46, 29–42 (2011). https://doi.org/10.1051/eas/1146003

    Article  Google Scholar 

  4. Fages, J.G., Lorca, X., Prud’homme, C.: Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/

  5. Fages, J.: Exploitation de structures de graphe en programmation par contraintes. Ph.D. thesis, École des mines de Nantes, France (2014)

    Google Scholar 

  6. Hansen, P., Zheng, M.: A linear algorithm for perfect matching in hexagonal systems. Discrete Math. 122, 179–196 (1993)

    Article  MathSciNet  Google Scholar 

  7. Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 70, 204–286 (1931). https://doi.org/10.1007/BF01339530

    Article  MATH  Google Scholar 

  8. Kekulé, A.: Untersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungen. Justus Liebigs Annalen der Chemie 137(2), 129–196 (1866). https://doi.org/10.1002/jlac.18661370202

    Article  Google Scholar 

  9. Lin, C.: Efficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuits. J. Chem. Inf. Comput. Sci. 40, 778–783 (2000)

    Article  Google Scholar 

  10. Lin, C., Fan, G.: Algorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci 39, 782–787 (1999)

    Article  Google Scholar 

  11. Luch, A.: The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press, London (2005). https://doi.org/10.1142/p306

  12. Mann, M., Thiel, B.: Kekulé structures enumeration yields unique SMILES. In: Proceedings of Workshop on Constraint Based Methods for Bioinformatics (2013)

    Google Scholar 

  13. Narita, A., Wang, X.Y., Feng, X., Müllen, K.: New advances in nanographene chemistry. Chem. Soc. Rev. 44(18), 6616–6643 (2015). https://doi.org/10.1039/C5CS00183H

    Article  Google Scholar 

  14. Randić, M.: Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68–70 (1976). https://doi.org/10.1016/0009-2614(76)80257-6

    Article  Google Scholar 

  15. Randić, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103(9), 3449–3606 (2003). https://doi.org/10.1021/cr9903656

    Article  Google Scholar 

  16. Randić, M.: Benzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbons. J. Comput. Chem. 40(5), 753–762 (2019)

    Article  Google Scholar 

  17. Randić, M., Balaban, A.T.: Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem. 108(17), e25657 (2018). https://doi.org/10.1002/qua.25657

    Article  Google Scholar 

  18. Randić, M., Guo, X.: Recursive method for enumeration of linearly independent and minimal conjugated circuits of benzenoid hydrocarbons. J. Chem. Inf. Model. 34(2), 339–348 (1994)

    Article  Google Scholar 

  19. Randić, M., Guo, X., Klein, D.J.: Analytical expressions for the count of LM-conjugated circuits of benzenoid hydrocarbons. Int. J. Quantum Chem. 60, 943–958 (1996)

    Article  Google Scholar 

  20. Rieger, R., Müllen, K.: Forever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J. Phys. Org. Chem. 23(4), 315–325 (2010). https://doi.org/10.1002/poc.1644

    Article  Google Scholar 

  21. Rispoli, F.J.: Counting perfect matchings in hexagonal systems associated with benzenoids. Math. Mag. 14, 194–200 (2001)

    Article  MathSciNet  Google Scholar 

  22. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  23. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI, pp. 362–367 (1994)

    Google Scholar 

  24. Wu, J., Pisula, W., Müllen, K.: Graphenes as potential material for electronics. Chem. Rev. 107(3), 718–747 (2007). https://doi.org/10.1021/cr068010r

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Terrioux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carissan, Y., Dim, CA., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., Varet, A. (2020). Computing the Local Aromaticity of Benzenoids Thanks to Constraint Programming. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics