Nothing Special   »   [go: up one dir, main page]

Skip to main content

Scalable Integration of Image and Face Based Augmented Reality

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2020)

Abstract

In this paper we present a scalable architecture that integrates image based augmented reality (AR) with face recognition and augmentation over a single camera video stream. To achieve the real time performance required and ensure a proper level of scalability, the proposed solution makes use of two different approaches. First, we identify that the main bottleneck of the integrated process is the feature descriptor matching step. Taking into account the particularities of this task in the context of AR, we perform a comparison of different well known Approximate Nearest Neighbour search algorithms. After the empirical evaluation of several performance metrics we conclude that HNSW is the best candidate. The second approach consists on delegating other demanding tasks such as face descriptor computation as asynchronous processes, taking advantage of multi-core processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Annoy. https://github.com/spotify/annoy. Accessed 2020

  2. Arcore. https://developers.google.com/ar/. Accessed 2020

  3. Arkit. https://developer.apple.com/augmented-reality/. Accessed 2020

  4. Augment. https://www.augment.com. Accessed 2020

  5. Aumentaty. http://www.aumentaty.com. Accessed 2020

  6. Aurasma. https://www.aurasma.com. Accessed 2020

  7. Kgraph. https://github.com/aaalgo/kgraph. Accessed 2020

  8. Opencv. https://opencv.org. Accessed 2020

  9. Vuforia. https://developer.vuforia.com/. Accessed 2020

  10. Zappar. https://www.zappar.com. Accessed 2020

  11. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  12. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 280–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_28

    Chapter  Google Scholar 

  13. Ierache, J., et al.: Development of a catalogs system for augmented reality applications. World Acad. Sci. Eng. Technol. Int. Sci. Index 9(1), 1–7 (2015)

    Google Scholar 

  14. Ierache, J., et al.: Augmented card system based on knowledge for medical emergency assistance. In: 2016 IEEE Congreso Argentino de Ciencias de La Informática y Desarrollos de Investigación, pp. 1–3 (2016). https://doi.org/10.1109/CACIDI.2016.7785979

  15. Iwasaki, M.: Proximity search in metric spaces using approximate k nearest neighbor graph. IPSJ Trans. Database 3(1), 18–28 (2010). (in Japanese)

    Google Scholar 

  16. Iwasaki, M., Miyazaki, D.: Optimization of indexing based on k-nearest neighbor graph for proximity (2018)

    Google Scholar 

  17. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search (2011)

    Google Scholar 

  18. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  19. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. CoRR abs/1603.09320 (2016). http://arxiv.org/abs/1603.09320

  20. Mangiarua, N., Ierache, J., Abasolo, M.J.: Implementation of an open source based augmented reality engine for cloud authoring frameworks. J. Comput. Sci. Technol. 19(2), e16 (2019). https://doi.org/10.24215/16666038.19.e16. http://journal.info.unlp.edu.ar/JCST/article/view/1263

    Article  Google Scholar 

  21. Mikolajczyk, K., Matas, J.: Improving descriptors for fast tree matching by optimal linear projection, pp. 1–8 (2007). https://doi.org/10.1109/ICCV.2007.4408871

  22. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISSAPP 2009, International Conference on Computer Vision Theory and Application, pp. 331–340. INSTICC Press (2009)

    Google Scholar 

  23. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014). https://doi.org/10.1109/TPAMI.2014.2321376

    Article  Google Scholar 

  24. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)

    Google Scholar 

  25. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 International Conference on Computer Vision, Washington, DC, USA, pp. 2564–2571 (2011)

    Google Scholar 

  26. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. CoRR abs/1503.03832 (2015). http://arxiv.org/abs/1503.03832

  27. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), Columbus, OH, USA, 23–28 June 2014, pp. 1701–1708. IEEE Computer Society (2014). https://doi.org/10.1109/CVPR.2014.220

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahuel A. Mangiarua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mangiarua, N.A., Ierache, J.S., Abásolo, M.J. (2020). Scalable Integration of Image and Face Based Augmented Reality. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2020. Lecture Notes in Computer Science(), vol 12242. Springer, Cham. https://doi.org/10.1007/978-3-030-58465-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58465-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58464-1

  • Online ISBN: 978-3-030-58465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics