Nothing Special   »   [go: up one dir, main page]

Skip to main content

Process Trace Classification for Stroke Management Quality Assessment

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12311))

Included in the following conference series:

Abstract

Stroke is a medical condition where poor blood flow to the brain may result in cell damage, possibly leading to patient’s death or disability. Acute stroke care is best performed in dedicated and well-organized centers. Medical process trace classification can support stroke management quality assessment, since it allows to verify whether better-equipped Stroke Centers actually implement more complete processes, suitable to manage complex patients as well. In our previous work, we developed a semantic similarity metric able to compare process traces. In this paper, we adopt such a metric to perform k-Nearest Neighbour (k-NN) classification in the field of stroke management; moreover, we present an alternative classification approach based on deep learning techniques. Experimental results have shown the feasibility of deep learning classification for stroke management quality assessment, which performed better than the application of the semantic similarity metric. Improvements and future research in this direction will therefore be considered. Difficulties in classifying patients treated in less-equipped hospitals also suggest to identify and manage possible organizational problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sanita24.ilsole24ore.com/art/medicina-e-ricerca/2017-04-14/stroke-unit-merce-rara-strutture-e-personale-dati-lontani-dm-702015-162809.php?uuid=AEEhud5.

  2. 2.

    https://iccbr2019.com/workshops/process-oriented-case-based-reasoning/.

  3. 3.

    https://www.tensorflow.org/.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and systems approaches. AI Commun. 7, 39–59 (1994)

    Article  Google Scholar 

  2. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23, 123–154 (1984)

    Article  Google Scholar 

  3. Alom, M.Z., et al.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019)

    Article  Google Scholar 

  4. Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Answering with cases: a CBR approach to deep learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 15–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_2

    Chapter  Google Scholar 

  5. Bejot, Y., Bailly, H., Durier, J., Giroud, M.: Epidemiology of stroke in Europe and trends for the 21st century. La Presse Medicale 45(12, Part 2), e391–e398 (2016). QMR Stroke

    Google Scholar 

  6. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Quart. 40, 1009–1034 (2016)

    Article  Google Scholar 

  7. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  8. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  10. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Classifying process instances using recurrent neural networks. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 313–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_25

    Chapter  Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning approach for the monitoring of business workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 390–405. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_29

    Chapter  Google Scholar 

  13. Kjellstrom, T., Norrving, B., Shatchkute, A.: Helsingborg declaration 2006 on European stroke strategies. Cerebrovasc. Dis. 23, 229–241 (2007)

    Article  Google Scholar 

  14. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)

    Article  Google Scholar 

  15. Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In: Proceedings of BMMDS/EMMSAD, pp. 94–107 (2010)

    Google Scholar 

  16. Le, M., Gabrys, B., Nauck, D.: A hybrid model for business process event prediction. In: Bramer, M., Petridis, M. (eds.) SGAI 2012, pp. 179–192. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4739-8_13

    Chapter  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  18. Leonardi, G., Montani, S., Striani, M.: Deep feature extraction for representing and classifying time series cases: towards an interpretable approach in haemodialysis. In: Proceedings of the 33rd International Florida Artificial Intelligence Research Society Conference, FLAIRS 2020, Miami, Florida, AAAI Press (2020)

    Google Scholar 

  19. Levenshtein, A.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  20. Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_25

    Chapter  Google Scholar 

  21. Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: Loucopoulos, P., Manolopoulos, Y., Pastor, O., Theodoulidis, B., Zdravkovic, J., (eds.) 19th IEEE Conference on Business Informatics, CBI 2017, Thessaloniki, Greece, 24–27 July ,2017, Volume 1: Conference Papers, pp. 119–128. IEEE Computer Society (2017)

    Google Scholar 

  22. Montani, S., Leonardi, G.: Retrieval and clustering for business process monitoring: results and improvements. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 269–283. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32986-9_21

    Chapter  Google Scholar 

  23. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)

    Article  Google Scholar 

  24. Montani, S., Leonardi, G., Striani, M., Quaglini, S., Cavallini, A.: Multi-level abstraction for trace comparison and process discovery. Expert Syst. Appl. 81, 398–409 (2017)

    Article  Google Scholar 

  25. Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G.: Semantic trace comparison at multiple levels of abstraction. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 212–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_15

    Chapter  Google Scholar 

  26. Palmer, M., Wu, Z.: Verb semantics for english-Chinese translation. Mach. Transl. 10, 59–92 (1995)

    Article  Google Scholar 

  27. Pascanu, R., Gülçehre, Ç., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. In: Bengio, Y., LeCun, Y., (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)

    Google Scholar 

  28. Ringelstein, E.B., et al.: European stroke organisation recommendations to establish a stroke unit and stroke center. Stroke 44(3), 828–840 (2013)

    Article  Google Scholar 

  29. Sani, S., Wiratunga, N., Massie, S., Cooper, K.: kNN sampling for personalised human activity recognition. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 330–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_23

    Chapter  Google Scholar 

  30. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 1–9. IEEE Computer Society (2015)

    Google Scholar 

  32. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction.CoRR, abs/1811.00062 (2018)

    Google Scholar 

  33. Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1091–1095 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Montani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leonardi, G., Montani, S., Striani, M. (2020). Process Trace Classification for Stroke Management Quality Assessment. In: Watson, I., Weber, R. (eds) Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science(), vol 12311. Springer, Cham. https://doi.org/10.1007/978-3-030-58342-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58342-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58341-5

  • Online ISBN: 978-3-030-58342-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics