Abstract
Stroke is a medical condition where poor blood flow to the brain may result in cell damage, possibly leading to patient’s death or disability. Acute stroke care is best performed in dedicated and well-organized centers. Medical process trace classification can support stroke management quality assessment, since it allows to verify whether better-equipped Stroke Centers actually implement more complete processes, suitable to manage complex patients as well. In our previous work, we developed a semantic similarity metric able to compare process traces. In this paper, we adopt such a metric to perform k-Nearest Neighbour (k-NN) classification in the field of stroke management; moreover, we present an alternative classification approach based on deep learning techniques. Experimental results have shown the feasibility of deep learning classification for stroke management quality assessment, which performed better than the application of the semantic similarity metric. Improvements and future research in this direction will therefore be considered. Difficulties in classifying patients treated in less-equipped hospitals also suggest to identify and manage possible organizational problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and systems approaches. AI Commun. 7, 39–59 (1994)
Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23, 123–154 (1984)
Alom, M.Z., et al.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019)
Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Answering with cases: a CBR approach to deep learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 15–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_2
Bejot, Y., Bailly, H., Durier, J., Giroud, M.: Epidemiology of stroke in Europe and trends for the 21st century. La Presse Medicale 45(12, Part 2), e391–e398 (2016). QMR Stroke
Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Quart. 40, 1009–1034 (2016)
Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19
Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Classifying process instances using recurrent neural networks. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 313–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_25
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning approach for the monitoring of business workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 390–405. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14274-1_29
Kjellstrom, T., Norrving, B., Shatchkute, A.: Helsingborg declaration 2006 on European stroke strategies. Cerebrovasc. Dis. 23, 229–241 (2007)
Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)
Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In: Proceedings of BMMDS/EMMSAD, pp. 94–107 (2010)
Le, M., Gabrys, B., Nauck, D.: A hybrid model for business process event prediction. In: Bramer, M., Petridis, M. (eds.) SGAI 2012, pp. 179–192. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4739-8_13
LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)
Leonardi, G., Montani, S., Striani, M.: Deep feature extraction for representing and classifying time series cases: towards an interpretable approach in haemodialysis. In: Proceedings of the 33rd International Florida Artificial Intelligence Research Society Conference, FLAIRS 2020, Miami, Florida, AAAI Press (2020)
Levenshtein, A.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707–710 (1966)
Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_25
Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: Loucopoulos, P., Manolopoulos, Y., Pastor, O., Theodoulidis, B., Zdravkovic, J., (eds.) 19th IEEE Conference on Business Informatics, CBI 2017, Thessaloniki, Greece, 24–27 July ,2017, Volume 1: Conference Papers, pp. 119–128. IEEE Computer Society (2017)
Montani, S., Leonardi, G.: Retrieval and clustering for business process monitoring: results and improvements. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 269–283. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32986-9_21
Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)
Montani, S., Leonardi, G., Striani, M., Quaglini, S., Cavallini, A.: Multi-level abstraction for trace comparison and process discovery. Expert Syst. Appl. 81, 398–409 (2017)
Montani, S., Striani, M., Quaglini, S., Cavallini, A., Leonardi, G.: Semantic trace comparison at multiple levels of abstraction. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 212–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_15
Palmer, M., Wu, Z.: Verb semantics for english-Chinese translation. Mach. Transl. 10, 59–92 (1995)
Pascanu, R., Gülçehre, Ç., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. In: Bengio, Y., LeCun, Y., (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)
Ringelstein, E.B., et al.: European stroke organisation recommendations to establish a stroke unit and stroke center. Stroke 44(3), 828–840 (2013)
Sani, S., Wiratunga, N., Massie, S., Cooper, K.: kNN sampling for personalised human activity recognition. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 330–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_23
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 1–9. IEEE Computer Society (2015)
Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction.CoRR, abs/1811.00062 (2018)
Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1091–1095 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Leonardi, G., Montani, S., Striani, M. (2020). Process Trace Classification for Stroke Management Quality Assessment. In: Watson, I., Weber, R. (eds) Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science(), vol 12311. Springer, Cham. https://doi.org/10.1007/978-3-030-58342-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-58342-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58341-5
Online ISBN: 978-3-030-58342-2
eBook Packages: Computer ScienceComputer Science (R0)