Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stable Resolving - A Randomized Local Search Heuristic for MaxSAT

  • Conference paper
  • First Online:
KI 2020: Advances in Artificial Intelligence (KI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12325))

Included in the following conference series:

  • 1287 Accesses

Abstract

Many problems from industrial applications and AI can be encoded as Maximum Satisfiability (MaxSAT). Often, it is more desirable to produce practicable results in very short time compared to optimal solutions after an arbitrary long computation time. In this paper, we propose Stable Resolving (SR), a novel randomized local search heuristic for MaxSAT with that aim. SR works for both weighted and unweighted instances. Starting from a feasible initial solution, the algorithm repeatedly performs the three steps of perturbation, improvements and solution checking. In the perturbation, the search space is explored at the cost of possibly worsening the current solution. The local improvements work by repeatedly flipping signs of variables in over-satisfied clauses. Finally, the algorithm performs a solution checking in a simulated annealing fashion. We compare our approach to state-of-the-art MaxSAT solvers and show by numerical experiments on benchmark instances from the annual MaxSAT competition that SR performs comparable on average and is even the best solver for particular problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We have submitted SR to the 2020’s MaxSAT competition.

References

  1. MaxSAT Evaluation 2019. https://maxsat-evaluations.github.io/2019/index.html

  2. Starexec Cluster. https://www.starexec.org/starexec/public/about.jsp. Accessed 2019

  3. Andrade, D.V., Resende, M.G.C., Werneck, R.F.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012). https://doi.org/10.1007/s10732-012-9196-4

    Article  MATH  Google Scholar 

  4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, San Francisco, CA, USA, pp. 399–404 (2009)

    Google Scholar 

  5. Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT evaluation 2018: new developments and detailed results. J. Satisf. Boolean Model. Comput. 11, 99–131 (2019). https://doi.org/10.3233/SAT190119

  6. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_7

    Chapter  MATH  Google Scholar 

  7. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incomplete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_3

    Chapter  Google Scholar 

  8. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artif. Intell. 244, 110–142 (2017). https://doi.org/10.1016/j.artint.2015.07.001. Combining Constraint Solving with Mining and Learning

  9. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian networks via maximum satisfiability. In: Kaski, S., Corander, J. (eds.) Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 33, pp. 86–95. PMLR, Reykjavik, 22–25 April 2014

    Google Scholar 

  10. Bouhmala, N.: Combining simulated annealing with local search heuristic for Max-SAT. J. Heuristics 25(1), 47–69 (2019). https://doi.org/10.1007/s10732-018-9386-9

    Article  Google Scholar 

  11. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    Google Scholar 

  12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

    Article  MathSciNet  MATH  Google Scholar 

  13. Demirović, E., Stuckey, P.J.: Techniques inspired by local search for incomplete MaxSAT and the linear algorithm: varying resolution and solution-guided search. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 177–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_11

    Chapter  Google Scholar 

  14. Fan, Y., Ma, Z., Su, K., Sattar, A., Li, C.: Ramp: a local search solver based on make-positive variables. In: MaxSAT Evaluation (2016)

    Google Scholar 

  15. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.: Solving periodic event scheduling problems with SAT. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS (LNAI), vol. 7345, pp. 166–175. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31087-4_18

    Chapter  Google Scholar 

  16. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_67

    Chapter  Google Scholar 

  17. Hoos, H.H.: Solving hard combinatorial problems with GSAT—A case study. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 107–119. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61708-6_53

    Chapter  Google Scholar 

  18. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 340–349 (2014)

    Google Scholar 

  19. Lei, Z., Cai, S.: Solving (weighted) partial MaxSAT by dynamic local search for sat. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1346–1352. International Joint Conferences on Artificial Intelligence Organization, July 2018. https://doi.org/10.24963/ijcai.2018/187

  20. Park, J.D.: Using weighted Max-SAT engines to solve MPE. In: Proceedings of the 18th National Conference on Artificial Intelligence, pp. 682–687 (2002)

    Google Scholar 

  21. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 399–419. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_13

    Chapter  Google Scholar 

  22. Reisch, J., Großmann, P., Kliewer, N.: Conflict resolving - a maximum independent set heuristics for solving MaxSAT. In: Proceedings of the 22nd International Multiconference Information Society, vol. 1, pp. 67–71 (2019)

    Google Scholar 

  23. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 521–532 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Reisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reisch, J., Großmann, P., Kliewer, N. (2020). Stable Resolving - A Randomized Local Search Heuristic for MaxSAT. In: Schmid, U., Klügl, F., Wolter, D. (eds) KI 2020: Advances in Artificial Intelligence. KI 2020. Lecture Notes in Computer Science(), vol 12325. Springer, Cham. https://doi.org/10.1007/978-3-030-58285-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58285-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58284-5

  • Online ISBN: 978-3-030-58285-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics