Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolving Sampling Strategies for One-Shot Optimization Tasks

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

One-shot optimization tasks require to determine the set of solution candidates prior to their evaluation, i.e., without possibility for adaptive sampling. We consider two variants, classic one-shot optimization (where our aim is to find at least one solution of high quality) and one-shot regression (where the goal is to fit a model that resembles the true problem as well as possible). For both tasks it seems intuitive that well-distributed samples should perform better than uniform or grid-based samples, since they show a better coverage of the decision space. In practice, quasi-random designs such as Latin Hypercube Samples and low-discrepancy point sets are indeed very commonly used designs for one-shot optimization tasks.

We study in this work how well low star discrepancy correlates with performance in one-shot optimization. Our results confirm an advantage of low-discrepancy designs, but also indicate the correlation between discrepancy values and overall performance is rather weak. We then demonstrate that commonly used designs may be far from optimal. More precisely, we evolve 24 very specific designs that each achieve good performance on one of our benchmark problems. Interestingly, we find that these specifically designed samples yield surprisingly good performance across the whole benchmark set. Our results therefore give strong indication that significant performance gains over state-of-the-art one-shot sampling techniques are possible, and that evolutionary algorithms can be an efficient means to evolve these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note here that for the classic one-shot optimization task, this question is not meaningful, as the design \(\{x\}\) with \(x=\arg \min f\) is optimal with zero regret.

References

  1. Beck, J.: Irregularities of Distribution. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. (JMLR) 13, 281–305 (2012). http://dl.acm.org/citation.cfm?id=2188395

  3. Bossek, J., Doerr, C., Kerschke, P., Neumann, A., Neumann, F.: Github repository with project data (2020). https://github.com/jakobbossek/PPSN2020-oneshot/

  4. Bousquet, O., Gelly, S., Kurach, K., Teytaud, O., Vincent, D.: Critical hyper-parameters: no random, no cry. arXiv preprint arXiv:1706.03200 (2017)

  5. Braaten, E., Weller, G.: An improved low-discrepancy sequence for multidimensional quasi-Monte Carlo integration. J. Comput. Phys. 33(2), 249–258 (1979)

    Article  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  7. Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1984). https://doi.org/10.1201/9781315139470

    Book  MATH  Google Scholar 

  8. Carnell, R.: lhs: Latin Hypercube Samples, r package version 1.0.2 (2020). https://CRAN.R-project.org/package=lhs

  9. Cauwet, M., et al.: Fully parallel hyperparameter search: reshaped space-filling. arXiv preprint arXiv:1910.08406 (2019)

  10. Chilès, J.-P., Desassis, N.: Fifty years of Kriging. In: Daya Sagar, B.S., Cheng, Q., Agterberg, F. (eds.) Handbook of Mathematical Geosciences, pp. 589–612. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78999-6_29

    Chapter  Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  12. Crombecq, K., Laermans, E., Dhaene, T.: Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling. Eur. J. Oper. Res. 214(3), 683–696 (2011). https://doi.org/10.1016/j.ejor.2011.05.032

    Article  Google Scholar 

  13. Dobkin, D.P., Eppstein, D., Mitchell, D.P.: Computing the discrepancy with applications to supersampling patterns. ACM Trans. Graph. 15, 354–376 (1996)

    Article  Google Scholar 

  14. Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory. LNM, vol. 2107, pp. 621–678. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04696-9_10

    Chapter  MATH  Google Scholar 

  15. Doerr, C., Rainville, F.D.: Constructing low star discrepancy point sets with genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 789–796. ACM (2013). https://doi.org/10.1145/2463372.2463469

  16. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  17. Forrester, A.I.J., Sobester, A., Keane, A.J.: Engineering Design via Surrogate Modelling - A Practical Guide. Wiley, Chichester (2008)

    Book  Google Scholar 

  18. Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964). https://doi.org/10.1145/355588.365104

    Article  Google Scholar 

  19. Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. arXiv e-prints arXiv:1603.08785 (2016)

  20. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical report RR-6829, Inria (2009). https://hal.inria.fr/inria-00362633/document

  21. Hlawka, E.: Funktionen von beschränkter variation in der theorie der gleichverteilung. Ann. Mat. Pura Appl. 54, 325–333 (1961). https://doi.org/10.1007/BF02415361

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Infer. 134(1), 268–287 (2005). https://doi.org/10.1016/j.jspi.2004.02.014

    Article  MathSciNet  MATH  Google Scholar 

  23. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998). https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  24. Koksma, J.F.: Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo \(1\). Mathematica B (Zutphen) 11, 7–11 (1942/3)

    Google Scholar 

  25. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  26. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009). https://doi.org/10.1007/978-0-387-78165-5

    Book  MATH  Google Scholar 

  27. Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. CTM. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03425-6

    Book  MATH  Google Scholar 

  28. Liu, L.: Could enough samples be more important than better designs for computer experiments? In: Proceedings of Annual Symposium on Simulation (ANSS 2005), pp. 107–115. IEEE (2005). https://doi.org/10.1109/ANSS.2005.17

  29. Matoušek, J.: Geometric Discrepancy, 2nd edn. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03942-3

    Book  MATH  Google Scholar 

  30. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979). http://www.jstor.org/stable/1268522

  31. Rainville, F.D., Gagné, C., Teytaud, O., Laurendeau, D.: Evolutionary optimization of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 22, 9:1–9:25 (2012). https://doi.org/10.1145/2133390.2133393

    Article  MathSciNet  MATH  Google Scholar 

  32. Rapin, J., Gallagher, M., Kerschke, P., Preuss, M., Teytaud, O.: Exploring the MLDA benchmark on the nevergrad platform. In: Proceedings of the 21st Annual Conference on Genetic and Evolutionary Computation (GECCO 2019) Companion, pp. 1888–1896. ACM (2019). https://doi.org/10.1145/3319619.3326830

  33. Rapin, J., Teytaud, O.: Nevergrad - A Gradient-Free Optimization Platform (2018). https://GitHub.com/FacebookResearch/Nevergrad

Download references

Acknowledgments

We thank François-Michel de Rainville for help with his implementation of the generalized Halton sequences. We also thank the reviewers for providing useful comments and references. This work was financially supported by the Paris Ile-de-France Region, by ANR-11-LABX-0056-LMH, by the Australian Research Council (ARC) through grant DP190103894, and by the South Australian Government through the Research Consortium “Unlocking Complex Resources through Lean Processing”. Moreover, P. Kerschke acknowledges support by the European Research Center for Information Systems (ERCIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Bossek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bossek, J., Doerr, C., Kerschke, P., Neumann, A., Neumann, F. (2020). Evolving Sampling Strategies for One-Shot Optimization Tasks. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics