Abstract
One-shot optimization tasks require to determine the set of solution candidates prior to their evaluation, i.e., without possibility for adaptive sampling. We consider two variants, classic one-shot optimization (where our aim is to find at least one solution of high quality) and one-shot regression (where the goal is to fit a model that resembles the true problem as well as possible). For both tasks it seems intuitive that well-distributed samples should perform better than uniform or grid-based samples, since they show a better coverage of the decision space. In practice, quasi-random designs such as Latin Hypercube Samples and low-discrepancy point sets are indeed very commonly used designs for one-shot optimization tasks.
We study in this work how well low star discrepancy correlates with performance in one-shot optimization. Our results confirm an advantage of low-discrepancy designs, but also indicate the correlation between discrepancy values and overall performance is rather weak. We then demonstrate that commonly used designs may be far from optimal. More precisely, we evolve 24 very specific designs that each achieve good performance on one of our benchmark problems. Interestingly, we find that these specifically designed samples yield surprisingly good performance across the whole benchmark set. Our results therefore give strong indication that significant performance gains over state-of-the-art one-shot sampling techniques are possible, and that evolutionary algorithms can be an efficient means to evolve these.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note here that for the classic one-shot optimization task, this question is not meaningful, as the design \(\{x\}\) with \(x=\arg \min f\) is optimal with zero regret.
References
Beck, J.: Irregularities of Distribution. Cambridge University Press, Cambridge (1987)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. (JMLR) 13, 281–305 (2012). http://dl.acm.org/citation.cfm?id=2188395
Bossek, J., Doerr, C., Kerschke, P., Neumann, A., Neumann, F.: Github repository with project data (2020). https://github.com/jakobbossek/PPSN2020-oneshot/
Bousquet, O., Gelly, S., Kurach, K., Teytaud, O., Vincent, D.: Critical hyper-parameters: no random, no cry. arXiv preprint arXiv:1706.03200 (2017)
Braaten, E., Weller, G.: An improved low-discrepancy sequence for multidimensional quasi-Monte Carlo integration. J. Comput. Phys. 33(2), 249–258 (1979)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1984). https://doi.org/10.1201/9781315139470
Carnell, R.: lhs: Latin Hypercube Samples, r package version 1.0.2 (2020). https://CRAN.R-project.org/package=lhs
Cauwet, M., et al.: Fully parallel hyperparameter search: reshaped space-filling. arXiv preprint arXiv:1910.08406 (2019)
Chilès, J.-P., Desassis, N.: Fifty years of Kriging. In: Daya Sagar, B.S., Cheng, Q., Agterberg, F. (eds.) Handbook of Mathematical Geosciences, pp. 589–612. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78999-6_29
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018
Crombecq, K., Laermans, E., Dhaene, T.: Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling. Eur. J. Oper. Res. 214(3), 683–696 (2011). https://doi.org/10.1016/j.ejor.2011.05.032
Dobkin, D.P., Eppstein, D., Mitchell, D.P.: Computing the discrepancy with applications to supersampling patterns. ACM Trans. Graph. 15, 354–376 (1996)
Doerr, C., Gnewuch, M., Wahlström, M.: Calculation of discrepancy measures and applications. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory. LNM, vol. 2107, pp. 621–678. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04696-9_10
Doerr, C., Rainville, F.D.: Constructing low star discrepancy point sets with genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 789–796. ACM (2013). https://doi.org/10.1145/2463372.2463469
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8
Forrester, A.I.J., Sobester, A., Keane, A.J.: Engineering Design via Surrogate Modelling - A Practical Guide. Wiley, Chichester (2008)
Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964). https://doi.org/10.1145/355588.365104
Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. arXiv e-prints arXiv:1603.08785 (2016)
Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical report RR-6829, Inria (2009). https://hal.inria.fr/inria-00362633/document
Hlawka, E.: Funktionen von beschränkter variation in der theorie der gleichverteilung. Ann. Mat. Pura Appl. 54, 325–333 (1961). https://doi.org/10.1007/BF02415361
Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Infer. 134(1), 268–287 (2005). https://doi.org/10.1016/j.jspi.2004.02.014
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998). https://doi.org/10.1023/A:1008306431147
Koksma, J.F.: Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo \(1\). Mathematica B (Zutphen) 11, 7–11 (1942/3)
Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)
Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009). https://doi.org/10.1007/978-0-387-78165-5
Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. CTM. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03425-6
Liu, L.: Could enough samples be more important than better designs for computer experiments? In: Proceedings of Annual Symposium on Simulation (ANSS 2005), pp. 107–115. IEEE (2005). https://doi.org/10.1109/ANSS.2005.17
Matoušek, J.: Geometric Discrepancy, 2nd edn. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03942-3
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979). http://www.jstor.org/stable/1268522
Rainville, F.D., Gagné, C., Teytaud, O., Laurendeau, D.: Evolutionary optimization of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 22, 9:1–9:25 (2012). https://doi.org/10.1145/2133390.2133393
Rapin, J., Gallagher, M., Kerschke, P., Preuss, M., Teytaud, O.: Exploring the MLDA benchmark on the nevergrad platform. In: Proceedings of the 21st Annual Conference on Genetic and Evolutionary Computation (GECCO 2019) Companion, pp. 1888–1896. ACM (2019). https://doi.org/10.1145/3319619.3326830
Rapin, J., Teytaud, O.: Nevergrad - A Gradient-Free Optimization Platform (2018). https://GitHub.com/FacebookResearch/Nevergrad
Acknowledgments
We thank François-Michel de Rainville for help with his implementation of the generalized Halton sequences. We also thank the reviewers for providing useful comments and references. This work was financially supported by the Paris Ile-de-France Region, by ANR-11-LABX-0056-LMH, by the Australian Research Council (ARC) through grant DP190103894, and by the South Australian Government through the Research Consortium “Unlocking Complex Resources through Lean Processing”. Moreover, P. Kerschke acknowledges support by the European Research Center for Information Systems (ERCIS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bossek, J., Doerr, C., Kerschke, P., Neumann, A., Neumann, F. (2020). Evolving Sampling Strategies for One-Shot Optimization Tasks. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-58112-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58111-4
Online ISBN: 978-3-030-58112-1
eBook Packages: Computer ScienceComputer Science (R0)