Nothing Special   »   [go: up one dir, main page]

Skip to main content

Can Compact Optimisation Algorithms Be Structurally Biased?

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Abstract

In the field of stochastic optimisation, the so-called structural bias constitutes an undesired behaviour of an algorithm that is unable to explore the search space to a uniform extent. In this paper, we investigate whether algorithms from a subclass of estimation of distribution algorithms, the compact algorithms, exhibit structural bias. Our approach, justified in our earlier publications, is based on conducting experiments on a test function whose values are uniformly distributed in its domain. For the experiment, 81 combinations of compact algorithms and strategies of dealing with infeasible solutions have been selected as test cases. We have applied two approaches for determining the presence and severity of structural bias, namely an (existing) visual and an (updated) statistical (Anderson-Darling) test. Our results suggest that compact algorithms are more immune to structural bias than their counterparts maintaining explicit populations. Both tests indicate that strong structural bias is found only in the cBFO algorithm, regardless of the choice of strategy of dealing with infeasible solutions, and cPSO with mirror strategy. For other test cases, statistical and visual tests disagree on some cases classified as having mild or strong structural bias: the former one tends to make harsher decisions, thus needing further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is called ‘probability vector’ in the original publications [11]; a terminology which we find somewhat misleading in case of a continuous search space and a Gaussian generating distribution.

  2. 2.

    This list clearly does not exhaust all possibilities.

  3. 3.

    To avoid complicating Table 1 further, results for cGA that requires no SDIS are shown as dismiss – it is the closest to how cGA deals with infeasible solutions.

  4. 4.

    This is easily explained if saturation is used but is not trivial if toroidal is used.

  5. 5.

    The quantiles are chosen ad hoc, based on the distribution of statistical measure over all combinations of algorithms and SDISs.

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  2. Campelo, F., Aranha, C.: EC bestiary: a bestiary of evolutionary, swarm and other metaphor-based algorithms, June 2018. https://doi.org/10.5281/zenodo.1293352

  3. Caraffini, F.: The stochastic optimisation software (SOS) platform, June 2019. https://doi.org/10.5281/zenodo.3237023

  4. Caraffini, F., Iacca, G.: The SOS platform: designing, tuning and statistically benchmarking optimisation algorithms. Mathematics 8(5), 785 (2020). https://doi.org/10.3390/math8050785

    Article  Google Scholar 

  5. Caraffini, F., Kononova, A.V.: Structural bias in differential evolution: a preliminary study. In: 14th International Workshop on Global Optimization, LeGO 2018, vol. 2070, p. 020005. AIP, Leiden (2018)

    Google Scholar 

  6. Caraffini, F., Kononova, A.V.: Structural Bias in Optimisation Algorithms: Extended Results (2020). https://doi.org/10.17632/zdh2phb3b4.2. Mendeley Data

  7. Caraffini, F., Kononova, A.V., Corne, D.W.: Infeasibility and structural bias in differential evolution. Inf. Sci. 496, 161–179 (2019). https://doi.org/10.1016/j.ins.2019.05.019

    Article  MathSciNet  Google Scholar 

  8. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. In: Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence. SCI, vol. 203, pp. 23–55. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01085-9_2

    Chapter  Google Scholar 

  9. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, USA (1975)

    Google Scholar 

  10. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011). https://doi.org/10.1016/j.swevo.2011.08.003

    Article  Google Scholar 

  11. Iacca, G., Caraffini, F.: Compact optimization algorithms with re-sampled inheritance. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 523–534. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_35

    Chapter  Google Scholar 

  12. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985). https://doi.org/10.1007/BF01898350

    Article  MathSciNet  MATH  Google Scholar 

  13. Justel, A., Peña, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett. 35(3), 251–259 (1997)

    Article  MathSciNet  Google Scholar 

  14. Kononova, A.V., Caraffini, F., Wang, H., Bäck, T.: Can single solution optimisation methods be structurally biased? MDPI Preprints (2020). https://doi.org/10.20944/preprints202002.0277.v1

  15. Kononova, A.V., Corne, D.W., Wilde, P.D., Shneer, V., Caraffini, F.: Structural bias in population-based algorithms. Inf. Sci. 298, 468–490 (2015). https://doi.org/10.1016/j.ins.2014.11.035

    Article  Google Scholar 

  16. Kost, J.T., McDermott, M.P.: Combining dependent p-values. Stat. Probab. Lett. 60(2), 183–190 (2002)

    Article  MathSciNet  Google Scholar 

  17. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4) (2007). https://doi.org/10.1145/1268776.1268777

  18. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_982

    Chapter  Google Scholar 

  19. Pelikan, M., Goldberg, D., Lobo, F.: A survey of optimization by building and using probabilistic models. In: Proceedings of the 2000 American Control Conference, vol. 5, pp. 3289–3293 (2000)

    Google Scholar 

  20. Piotrowski, A.P., Napiorkowski, J.J.: Searching for structural bias in particle swarm optimization and differential evolution algorithms. Swarm Intell. 10(4), 307–353 (2016). https://doi.org/10.1007/s11721-016-0129-y

    Article  Google Scholar 

  21. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  22. Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

    Google Scholar 

  23. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

Download references

Acknowledgments

The work of Hao Wang was supported by the Paris Ile-de-France Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Caraffini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kononova, A.V., Caraffini, F., Wang, H., Bäck, T. (2020). Can Compact Optimisation Algorithms Be Structurally Biased?. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics