Nothing Special   »   [go: up one dir, main page]

Skip to main content

High Dimensional Bayesian Optimization Assisted by Principal Component Analysis

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

Bayesian Optimization (BO) is a surrogate-assisted global optimization technique that has been successfully applied in various fields, e.g., automated machine learning and design optimization. Built upon a so-called infill-criterion and Gaussian Process regression (GPR), the BO technique suffers from a substantial computational complexity and hampered convergence rate as the dimension of the search spaces increases. Scaling up BO for high-dimensional optimization problems remains a challenging task.

In this paper, we propose to tackle the scalability of BO by hybridizing it with a Principal Component Analysis (PCA), resulting in a novel PCA-assisted BO (PCA-BO) algorithm. Specifically, the PCA procedure learns a linear transformation from all the evaluated points during the run and selects dimensions in the transformed space according to the variability of evaluated points. We then construct the GPR model, and the infill-criterion in the space spanned by the selected dimensions.

We assess the performance of our PCA-BO in terms of the empirical convergence rate and CPU time on multi-modal problems from the COCO benchmark framework. The experimental results show that PCA-BO can effectively reduce the CPU time incurred on high-dimensional problems, and maintains the convergence rate on problems with an adequate global structure. PCA-BO therefore provides a satisfactory trade-off between the convergence rate and computational efficiency opening new ways to benefit from the strength of BO approaches in high dimensional numerical optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With an abuse of terminology, the operation \(\mathbf {X} \cup \{\mathbf {x}^*\}\) is understood as appending \(\mathbf {x}^*\) at the bottom row of \(\mathbf {X}\) throughout this paper. \(\mathbf {y}\cup \{f(\mathbf {x}^*)\}\) is defined similarly.

  2. 2.

    Alternatively, the weight can also be computed directly from the function value, e.g., through a parameterized hyperbolic function. However, we do not prefer this approach since it introduces extra parameters that require tuning, and does not possess the discount effect of the rank-based scheme since the weights remain static throughout the optimization.

  3. 3.

    We take the Scipy implementation of DE (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html) with a population size of 20r and the “best1bin” strategy, which uses the binary crossover and calculates the differential vector based on the current best point. Here, we set the evaluation budget to \(20020r^2\) to optimize the infill-criterion.

  4. 4.

    On the 10-dimensional F20 problem, we observed that the standard deviation of BO over 30 runs gradually shrinks to zero after 50 iterations, making the confidence interval disappear in the corresponding subplot.

References

  1. Aage, N., Andreassen, E., Lazarov, B.S.: Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct. Multidisciplinary Optim. 51(3), 565–572 (2014). https://doi.org/10.1007/s00158-014-1157-0

    Article  MathSciNet  Google Scholar 

  2. Arsenyev, I., Duddeck, F., Fischersworring-Bunk, A.: Adaptive surrogate-based multi-disciplinary optimization for vane clusters. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection (2015). https://doi.org/10.1115/GT2015-42164

  3. Blanchet-Scalliet, C., Helbert, C., Ribaud, M., Vial, C.: Four algorithms to construct a sparse kriging kernel for dimensionality reduction. Comput. Stat. 34(4), 1889–1909 (2019). https://doi.org/10.1007/s00180-019-00874-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Broomhead, D.S.: Radial Basis Functions, Multi-variable Functional Interpolation and Adaptive Networks. Royals Signals and Radar Establishment (1988)

    Google Scholar 

  5. Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  6. Forrester, A.I., Bressloff, N.W., Keane, A.J.: Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2071), 2177–2204 (2006). https://doi.org/10.1098/rspa.2006.1679

    Article  MATH  Google Scholar 

  7. Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering Design via Surrogate Modelling - A Practical Guide. Wiley, Hoboken (2008). https://doi.org/10.1002/9780470770801

    Book  Google Scholar 

  8. Gaudrie, D., Le Riche, R., Picheny, V., Enaux, B., Herbert, V.: From CAD to eigenshapes for surrogate-based optimization. In: 13th World Congress of Structural and Multidisciplinary Optimization. Beijing. (2019). https://hal.archives-ouvertes.fr/hal-02142492

  9. Gunn, S.R.: Support Vector Machines for Classification and Regression, Technical report (1998)

    Google Scholar 

  10. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192., pp. 75–102. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4

  11. Hansen, N., et al.: COmparing continuous optimizers: numbbo/COCO on Github (2019). https://doi.org/10.5281/zenodo.2594848

  12. Hojjat, M., Stavropoulou, E., Bletzinger, K.U.: The vertex morphing method for node-based shape optimization. Comput. Methods Appl. Mech. Eng. 268, 494–513 (2014). https://doi.org/10.1016/j.cma.2013.10.015

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, W., Zhao, D., Sun, F., Liu, H., Chang, E.: Scalable Gaussian process regression using deep neural networks. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 3576–3582. AAAI Press, Buenos Aires (2015)

    Google Scholar 

  14. Huang, Z., Wang, C., Chen, J., Tian, H.: Optimal design of aeroengine turbine disc based on kriging surrogate models. Comput. Struct. 89(1–2), 27–37 (2011). https://doi.org/10.1016/j.compstruc.2010.07.010

    Article  Google Scholar 

  15. Jeong, S., Murayama, M., Yamamoto, K.: Efficient optimization design method using kriging model. J. Aircraft 42(2), 413–420 (2005). https://doi.org/10.1023/A:1008306431147

    Article  Google Scholar 

  16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998). https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  17. Ju, S., Shiga, T., Feng, L., Hou, Z., Tsuda, K., Shiomi, J.: Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X 7(2), 021024 (2017). https://doi.org/10.1103/PhysRevX.7.021024

    Article  Google Scholar 

  18. Kanazaki, M., Takagi, H., Makino, Y.: Mixed-fidelity efficient global optimization applied to design of supersonic wing. Procedia Eng. 67(1), 85–99 (2013). https://doi.org/10.1016/j.proeng.2013.12.008

    Article  Google Scholar 

  19. Kapsoulis, D., Tsiakas, K., Asouti, V., Giannakoglou, K.: The use of Kernel PCA in evolutionary optimization for computationally demanding engineering applications. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.1109/SSCI.2016.7850203

  20. Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009). https://doi.org/10.1016/j.ejor.2007.10.013

    Article  MathSciNet  MATH  Google Scholar 

  21. Lam, R., Poloczek, M., Frazier, P., Willcox, K.E.: Advances in Bayesian optimization with applications in aerospace engineering. In: 2018 AIAA Non-Deterministic Approaches Conference, p. 1656 (2018). https://doi.org/10.2514/6.2018-1656

  22. Liu, K., Detwiler, D., Tovar, A.: Metamodel-based global optimization of vehicle structures for crashworthiness supported by clustering methods. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, K.-U., Maute, K. (eds.) WCSMO 2017, pp. 1545–1557. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67988-4_116

    Chapter  Google Scholar 

  23. MATLAB: version 9.5.0.944444 (R2018b). The MathWorks Inc., Natick, Massachusetts (2018)

    Google Scholar 

  24. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07165-2_55

    Chapter  Google Scholar 

  25. Mockus, J.: Bayesian Approach to Global Optimization: Theory and Applications, vol. 37. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-009-0909-0

    Book  MATH  Google Scholar 

  26. Palar, P.S., Liem, R.P., Zuhal, L.R., Shimoyama, K.: On the use of surrogate models in engineering design optimization and exploration: the key issues. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1592–1602 (2019). https://doi.org/10.1145/3319619.3326813

  27. Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., Duddeck, F.: Kriging-guided level set method for crash topology optimization. In: 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, GACM, Stuttgart (2017)

    Google Scholar 

  28. Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., Duddeck, F.: Kriging-assisted topology optimization of crash structures. Comput. Methods Appl. Mech. Eng. 348, 730–752 (2019). https://doi.org/10.1016/j.cma.2019.02.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Raponi, E., Bujny, M., Olhofer, M., Boria, S., Duddeck, F.: Hybrid Kriging-assisted level set method for structural topology optimization. In: 11th International Conference on Evolutionary Computation Theory and Applications, Vienna (2019). https://doi.org/10.5220/0008067800700081

  30. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. Adaptative Computation and Machine Learning Series. University Press Group Limited (2006)

    Google Scholar 

  31. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, Dordrecht (2003). https://doi.org/10.1007/978-1-4757-3799-8

  32. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998). https://doi.org/10.1162/089976698300017467

    Article  Google Scholar 

  33. van Stein, B., Wang, H., Kowalczyk, W., Emmerich, M., Bäck, T.: Cluster-based Kriging approximation algorithms for complexity reduction. Appl. Intell. 50(3), 778–791 (2019). https://doi.org/10.1007/s10489-019-01549-7

    Article  Google Scholar 

  34. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  35. Ueno, T., Rhone, T.D., Hou, Z., Mizoguchi, T., Tsuda, K.: COMBO: an efficient Bayesian optimization library for materials science. Mater. Discov. 4, 18–21 (2016). https://doi.org/10.1016/j.md.2016.04.001

    Article  Google Scholar 

  36. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  37. Viana, F.A., Simpson, T.W., Balabanov, V., Toropov, V.: Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J. 52(4), 670–690 (2014). https://doi.org/10.2514/1.J052375

    Article  Google Scholar 

  38. Vivarelli, F., Williams, C.K.I.: Discovering hidden features with Gaussian processes regression. In: Kearns, M.J., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 613–619. MIT Press (1999)

    Google Scholar 

  39. Wang, H., van Stein, B., Emmerich, M., Bäck, T.: A new acquisition function for Bayesian optimization based on the moment-generating function. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, Banff, AB, Canada, 5–8 October 2017, pp. 507–512. IEEE (2017). https://doi.org/10.1109/SMC.2017.8122656

  40. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., De Freitas, N.: Bayesian optimization in a billion dimensions via random embeddings (2016)

    Google Scholar 

  41. Yoshimura, M., Shimoyama, K., Misaka, T., Obayashi, S.: Topology optimization of fluid problems using genetic algorithm assisted by the Kriging model. Int. J. Numer. Method Eng. 109(4), 514–532 (2016). https://doi.org/10.1002/nme.5295

    Article  MathSciNet  Google Scholar 

  42. Yuan, Y.X.: A Review of Trust Region Algorithms for Optimization

    Google Scholar 

Download references

Acknowledgments

Our work was supported by the Paris Ile-de-France Region and by COST Action CA15140 “Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Raponi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raponi, E., Wang, H., Bujny, M., Boria, S., Doerr, C. (2020). High Dimensional Bayesian Optimization Assisted by Principal Component Analysis. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics