Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 706 Accesses

Abstract

WSNs are infiltrating the environment in its wide sense, indoors and outdoors, in the human body, in unapproachable emplacements; they have found their way into a wide variety of applications and systems with vastly varying requirements and characteristics. Guardian angels? Watchdogs? Whatever, they are intended to work properly, faultlessly, no matter when and where. As a consequence, it is becoming increasingly difficult to forge unique requirements regarding hardware issues and software support. This is particularly important in a multidisciplinary research and practice area such as WSNs, where close collaboration between users, application domain experts, hardware designers, and software developers is needed to implement efficient systems.

In this chapter, who is who in WSNs are identified, motes, building blocks, producers, techniques, applications. A categorization of WSN applications according to their intended use is presented considering deployment, mobility, resources, cost, energy, heterogeneity, modality, infrastructure, topology, coverage, connectivity, size, lifetime, and QoS. The considered application categories, though non-exclusive, are branded as military, industrial, environmental, healthcare, daily life, and multimedia. Typical applications tasks are:

  • Performance monitoring

  • Surveillance

  • Environmental monitoring

  • Process control

  • Tracking of personnel and goods

  • Emergency management

  • Robotics

When compared with conventional mobile ad hoc networks (MANETs), WSNs have different characteristics and present different engineering challenges and considerations.

“Many can do … Few innovate.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Raytheon BBN Technologies delivers innovative solutions in quantum sensing, quantum communications, quantum computing, multisensor processing systems, speech recognition, and software systems. Their solutions are widely used in the US Navy, the UK Royal Air Force, and the Canadian Navy.

  2. 2.

    Locomotion is the movement of an organism from one place to another, often by the action of appendages such as flagella, limbs, or wings. In some animals, such as fish, locomotion results from a wavelike series of muscle contractions.

  3. 3.

    Kinect is Microsoft’s motion sensor add-on for the Xbox 360 gaming console. The device provides a natural user interface (NUI) that allows users to interact intuitively and without any intermediary device, such as a controller. The Kinect system identifies individual players through face recognition and voice recognition. A depth camera, which “sees” in 3D, creates a skeleton image of a player and a motion sensor detects their movements. Speech recognition software allows the system to understand spoken commands and gesture recognition enables the tracking of player movements. Although Kinect was developed for playing games, the technology has been applied to real-world applications as diverse as digital signage, virtual shopping, education, telehealth service delivery, and other areas of health IT.

  4. 4.

    The ZigBee RF4CE specification offers an immediate, low-cost, easy-to-implement networking solution for control products based on ZigBee remote control and ZigBee input device. The ZigBee RF4CE specification is designed to provide low-power, low-latency control for a wide range of products including home entertainment devices, garage door openers, keyless entry systems, and many more.

  5. 5.

    Time-of-flight principle is a method for measuring the distance between a sensor and an object, based on the time difference between the emission of a signal and its return to the sensor, after being reflected by an object. Various types of signals, also called carriers, can be used with ToF, the most common being sound and light.

  6. 6.

    Odometry is the use of data from motion sensors to estimate change in position over time. It is used in robotics by some legged or wheeled robots to estimate their position relative to a starting location. This method is sensitive to errors due to the integration of velocity measurements over time to give position estimates. Rapid and accurate data collection, instrument calibration, and processing are required in most cases for odometry to be used effectively.

  7. 7.

    I/Q data shows the changes in magnitude (or amplitude) and phase of a sine wave. If amplitude and phase changes occur in an orderly, predetermined fashion, these amplitude and phase changes can be used to encode information upon a sine wave, a process known as modulation.

  8. 8.

    In wireless communications, channel state information (CSI) refers to known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multi-antenna systems.

  9. 9.

    The Kinetis® KL0x-48 MHz MCU family is the entry point into the Kinetis L series based on the Arm® Cortex®-M0+ core.

  10. 10.

    The SKY13314-374LF is a pHEMT GaAs I/C SPDT antenna switch operating in the 0.1-6 GHz frequency range. Switching between the antenna and ports is accomplished with two control voltages. The low loss, high isolation, high linearity, small size, and low cost make this switch ideal for all dual-band WLAN systems operating in the 2.4–2.5 GHz and 4.9–5.9 GHz bands.

  11. 11.

    ±2% ultralow-power, digital humidity sensor with temperature sensor in WCSP .

  12. 12.

    The ALS-PT19-315C/L177/TR8 is a low-cost ambient light sensor, consisting of phototransistor in miniature SMD.

  13. 13.

    The HM01B0 is an ultralow-power CMOS image sensor that enables the integration of an ““Always ON”” camera for computer vision applications such as gestures, intelligent ambient light and proximity sensing, tracking, and object identification. The unique architecture of the sensor allows the sensor to consume very low power of <2 mW at QVGA 30 fps.

  14. 14.

    Test in which electrode patches are attached to the skin to monitor the electrical activity of the heart

  15. 15.

    Test that measures and records the electrical activity of the brain

  16. 16.

    PIR sensors allow to sense motion; they detect whether a human has moved in or out of their range (Adafruit Learning Technologies 2014).

  17. 17.

    Adjective describing any process that does not involve either heat or a change in temperature

  18. 18.

    A tiny memory card that uses flash memory to make storage portable among various devices, such as car navigation systems, cellular phones, eBooks, PDAs, … (TechTarget 2014a, b)

  19. 19.

    A tiny memory card used to make storage portable among various devices, such as car navigation systems, cellular phones, eBooks, PDAs, … (TechTarget 2014a, b)

  20. 20.

    An electronic device that records images

  21. 21.

    Logitech bought Labtec in February 7, 2001.

References

  • Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In H.-W. Gellersen (Ed.), Lecture notes in computer science-handheld and ubiquitous computing (Vol. 1707, pp. 304–307). Berlin/Heidelberg: Springer.

    Google Scholar 

  • ACME Systems srl. (2014). About us. ACME Systems srl. January 1, 2014. http://foxlx.acmesystems.it/about_us. Accessed 4 Apr 2014.

  • Adafruit Learning Technologies. (2014). PIR motion sensor. Adafruit Learning Technologies. January 1, 2014. http://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/. Accessed 6 Mar 2014.

  • Agilent Technologies. (2003a). Agilent ADCM-1670 CIF resolution CMOS camera module, UART output. Agilent Technologies. May 13, 2003. http://www.digchip.com/datasheets/parts/datasheet/021/ADCM-1670.php. Accessed 10 Apr 2014.

  • Agilent Technologies. (2003b). Agilent ADCM-1700-0000: Landscape CIF resolution CMOS camera module. Agilent Technologies. November 7, 2003. http://www.zhopper.narod.ru/mobile/adcm1700.pdf. Accessed 23 Mar 2014.

  • Agilent Technologies. (2003c). Agilent ADCM-2650 portrait VGA resolution CMOS camera module. Agilent Technologies. February 19, 2003. http://centerforartificialvision.com/pdf/c4avdcm/ADCM2650PB.pdf. Accessed 30 Mar 2014.

  • Agilent Technologies. (2004). Agilent ADNS-3060 High-performance optical mouse sensor. Agilent Technologies. October 20, 2004. http://datasheet.eeworld.com.cn/pdf/HP/48542_ADNS-3060.pdf. Accessed 30 Mar 2014.

  • Akyildiz, I. F., Melodia, T., & Chowdury, K. R. (2007, December). Wireless multimedia sensor networks: A survey. IEEE Wireless Communication (IEEE), 14(6), 32–39.

    Article  Google Scholar 

  • Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2008, October). Wireless multimedia sensor networks: Applications and testbeds. Proceedings of the IEEE (IEEE), 96(10), 1588–1605.

    Article  Google Scholar 

  • Alemdar, H., & Ersoy, C. (2010, October). Wireless sensor networks for healthcare: A survey. Computer Networks (Elsevier), 54(15), 2688–2710.

    Article  Google Scholar 

  • Almalkawi, I. T., Zapata, M. G., Al-Karaki, J. N., & Morillo-Pozo, J. (2010). Wireless multimedia sensor networks: Current trends and future directions. Europe PubMed Central (Basel), 10(7), 6662–6717.

    Google Scholar 

  • Analog Devices. (1998). DSP microcomputer: ADSP-2181. Analog Devices. January 1, 1998. http://www.analog.com/static/imported-files/data_sheets/ADSP-2181.pdf. Accessed 1 Mar 2014.

  • Analog Devices. (2013). AD7476: 1MSPS, 12-BIT ADC IN 6 LEAD SOT-23. Analog Devices. December 19, 2013. http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7476/products/product.html. Accessed 19 Dec 2013.

  • Anastasi, G., Falchi, A., Passarella, A., Conti, M., & Gregori, E. (2004). Performance measurements of motes sensor networks. In The 7th ACM international symposium on modeling, analysis and simulation of wireless and mobile systems (MSWiM) (pp. 174–181). Venice, Italy: ACM.

    Google Scholar 

  • Arampatzis, T., Lygeros, J., & Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In The 2005 IEEE international symposium on intelligent control, mediterrean conference on control and automation (pp. 719–724). Limassol, Cyprus: IEEE.

    Google Scholar 

  • Ash, J. N., Whipps, G. T., & Kozick, R. J. (2010). Performance of shockwave-based shooter localization under model misspecification. In IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) (pp. 2694–2697). Dallas,TX: IEEE.

    Google Scholar 

  • Atmel. (2002). Atmel FPSLIC 5K – 40K gates of AT40K FPGA with 8-bit AVR. Atmel. January 1, 2002. http://media.digikey.com/pdf/Data%20Sheets/Atmel%20PDFs/AT94K05_10_40AL%20Complete.pdf. Accessed 31 Mar 2014.

  • Atmel. (2003). 4-megabit (512K x 8) single 2.7-volt battery-voltage flash memory. Atmel. http://pdf.datasheetcatalog.com/datasheet/atmel/doc0383.pdf. Accessed 14 Apr 2014.

  • Atmel. (2008a). AT91 ARM thumb-based microcontrollers. Atmel. December 7, 2008. http://www.tme.eu/en/Document/84227da6b1aeb2914051d2f6e285168f/at91sam7sxxx.pdf. Accessed 30 Mar 2014.

  • Atmel. (2008b). Atmel AT89C51AC3 enhanced 8-bit microcontroller with 64KB flash memory. Atmel. February 1, 2008. http://www.atmel.com/Images/doc4383.pdf. Accessed 1 Apr 2014.

  • Atmel. (2011a). 8-bit Atmel microcontroller with 128KBytes in-system programmable flash. Atmel. January 1, 2011. http://www.atmel.com/Images/doc2467.pdf. Accessed 21 Mar 2014.

  • Atmel. (2011b). 8-bit Atmel microcontroller with 4/8/16K bytes in-system programmable flash. Atmel. January 1, 2011. http://www.atmel.com/Images/2545s.pdf. Accessed 9 Mar 2014.

  • Atmel. (2011c). AT91SAM ARM-based embedded MPU. Atmel. October 3, 2011. http://www.atmel.com/Images/doc6062.pdf. Accessed 5 Apr 2014.

  • AverLogic Technologies. (2002). AL440B: 4M-bit high speed FIFO field memory. AverLogic Technologies. November 11, 2002. http://www.averlogic.com/pdf/AL440B_Flyer.pdf. Accessed 29 Mar 2014.

  • Baggio, A. (2005). Wireless sensor networks in precision agriculture. In Workshop on Real-World Wireless Sensor Networks (REALWSN). Stockholm, Sweden: Swedish Institute of Computer Science (SICS).

    Google Scholar 

  • Balogh, G., LeDeczi, A., Maroti, M., & Simon, G. (2005). Time of arrival data fusion for source localization. In The WICON workshop on information fusion and dissemination in wireless sensor networks (SensorFusion). Budapest, Hungary: IEEE.

    Google Scholar 

  • Bao, S. D., Zhang, Y.-T., & Shen, L.-F. (2005). Physiological signal based entity authentication for body area sensor networks and mobile healthcare systems. In 27th annual international conference of the Engineering in Medicine and Biology Society (IEEE-EMBS) (pp. 2455–2458). Shanghai, China: IEEE.

    Google Scholar 

  • Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., & Hu, Y. F. (2007, May). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications (Elsevier), 30(7), 1655–1695.

    Article  Google Scholar 

  • Barth, A. T., Hanson, M. A., Powell, H. C., & Lach, J. (2009). TEMPO 3.1: A body area sensor network platform for continuous movement assessment. In Sixth international workshop on wearable and implantable Body Sensor Networks (BSN) (pp. 71–76). Berkeley, CA: IEEE.

    Google Scholar 

  • Bedard, J., & Pare, S. (2003). Ferret: A small arms fire detection system: Localization concepts. In Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland defense and law enforcement II (pp. 497–509). Orlando, FL: SPIE.

    Chapter  Google Scholar 

  • Bhatia, D., Estevez, L., & Rao, S. (2007). Energy efficient contextual sensing for elderly care. In The 29th annual international conference of the IEEE engineering in medicine and biology society. Lyon, France: IEEE.

    Google Scholar 

  • Bluegiga. (2013).WT12 bluetooth class 2 module. Bluegiga. January 1, 2013. http://www.bluegiga.com/en-US/products/bluetooth-classic-modules/wt12-bluetooth%2D%2Dclass-2-module/. Accessed 21 Jan 2014.

  • Boice, J., et al. (2005). Meerkats: A power–aware, self–managing wireless camera network for wide area monitoring. Santa Cruz, CA: Technical, Department of Computer Engineering, University of California.

    Google Scholar 

  • Boyden, T. C. (1982). The pollination biology of Calypso Bulbosa var. Americana (Orchidaceae): Initial deception of bumblebee visitors. Oecologia (Springer Nature), 55, 178–184.

    Article  Google Scholar 

  • Bozkurt, A., Gilmour, R. F., & Lal, A. (2009, September). Balloon-assisted flight of radio-controlled insect biobots. Transactions on Biomedical Engineering (IEEE), 56(9), 2304–2307.

    Article  Google Scholar 

  • Bozkurt, A., Lobaton, E., & Sichitiu, M. (2016, May). A biobotic distributed sensor network for under-rubble search and rescue. Computer (IEEE), 49(5), 38–46.

    Article  Google Scholar 

  • BP Solar. (2014). MSX-01F. BP Solar. January 1, 2014. http://au.element14.com/bp-solar/msx-01f/solar-panel-1-2w/dp/654012. Accessed 2 Feb 2014.

  • Britton, M., & Sacks, L. (2004). The SECOAS project – Development of a self-organising, wireless sensor network for environmental monitoring. In Second international workshop on Sensor and Actor Network Protocols and Applications (SANPA) (pp. 1–7). Boston, MA.

    Google Scholar 

  • Brooks, R. A., & Flynn, A. M. (1989). Fast, cheap and out of control. Cambridge, MA: Massachusetts Institute of Technology.

    Google Scholar 

  • BugGuide. (2020). Bombus. Iowa State University. BugGuide. January 1, 2020. https://bugguide.net/index.php?q=search&keys=Bombus&search=Search. Accessed 20 June 2020.

  • Buonadonna, P., Gay, D., Hellerstein, J. M., Hong, W., & Madden, S. (2005). TASK: Sensor network in a box. In Proceeedings of the second european workshop on wireless sensor networks (pp. 133–144). Istanbul, Turkey: IEEE.

    Google Scholar 

  • Callaway, E., et al. (2002, August). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. Communications Magazine (IEEE), 40(8), 70–77.

    Article  Google Scholar 

  • Camhi, J. M., & Johnson, E. N. (1999). High-frequency steering maneuvers mediated by tactile cues: Antennal wall-following in the cockroach. Journal of Experimental Biology (Company of Biologists), 202, 631–643.

    Article  Google Scholar 

  • Campbell, J., Gibbons, P. B., Nath, S., Pillai, P., Seshan, S., & Sukthanka, R. (2005). IrisNet: An internet-scale architecture for multimedia sensors. In The 13th annual ACM international conference on Multimedia (MULTIMEDIA) (pp. 81–88). Singapore: ACM.

    Chapter  Google Scholar 

  • Capo-Chichi, E. P., & Friedt, J.-M. (2008). Design of embedded sensor platform for multimedia application. In First international conference on Distributed Framework and Applications (DFmA) (pp. 146–150). Penang, Malaysia: IEEE.

    Chapter  Google Scholar 

  • Capra, M., Radenkovic, M., Benford, S., Oppermann, L., Drozd, A., & Flintham, M. (2005). The multimedia challenges raised by pervasive games. In The 13th annual ACM international conference on multimedia (MULTIMEDIA) (pp. 89–95). Singapore: ACM.

    Chapter  Google Scholar 

  • Carlsen, S., Skavhaug, A., Petersen, S., & Doyle, P. (2008). Using wireless sensor networks to enable increased oil recovery. In IEEE international conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1039–1048). Hamburg, Germany: IEEE.

    Google Scholar 

  • Carnegie Mellon University. (2007). CMUcam3 datasheet. Carnegie Mellon University. September 22, 2007. http://www.superrobotica.com/download/cmucam3/CMUcam3_datasheet.pdf. Accessed 20 Mar 2014.

  • Centeye. (2020). Easily to use image sensors for microcontrollers and DSPs. Centeye. January 1, 2020. http://www.centeye.com/products/current-centeye-vision-chips/. Accessed 21 June 2020.

  • Chan, M., Estève, D., Escriba, C., & Campo, E. (2008, July). A review of smart homes-present state and future challenges. Computer Methods and Programs in Biomedicine (Elsevier), 91(1), 55–81.

    Article  Google Scholar 

  • Chatzigiannakis, I., Mylonas, G., & Nikoletseas, S. (2007). 50 ways to build your application: A survey of middleware and systems for wireless sensor networks. In IEEE conference on Emerging Technologies and Factory Automation (ETFA) (pp. 466–473). Patras, Greece: IEEE.

    Google Scholar 

  • Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002, September). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks (Kluwer Academic Publishers), 8(5), 481–494.

    Article  MATH  Google Scholar 

  • Chen, P., et al. (2008a). CITRIC: A low-bandwidth wireless camera network platform. In Second ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 1–10). Stanford, CA: ACM/IEEE.

    Google Scholar 

  • Chen, S.-L., Lee, H. Y., Chu, Y.-W., Chen, C.-A., Lin, C.-C., & Luo, C.-H. (2008b). A variable control system for wireless body sensor network. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2034–2037). Seattle, WA: IEEE.

    Google Scholar 

  • Chen, P., et al. (2013, March). A low-bandwidth camera sensor platform with applications in smart camera networks. ACM Transactions on Sensor Networks (ACM), 21, 1–23.

    Google Scholar 

  • Cheung, S. Y., Ergen, S. C., & Varaiya, P. (2005). Traffic surveillance with wireless magnetic sensors. In 12th ITS world congress. San Francisco, CA: Intelligent Transport Systems.

    Google Scholar 

  • Chung, W.-Y., Yau, C.-L., Shin, K.-S., & Myllyla, R. (2007). A cell phone based health monitoring system with self analysis processor using wireless sensor network technology. In 29th annual international conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS) (pp. 3705–3708). Lyon, France: IEEE.

    Google Scholar 

  • Consolvo, S., Roessler, P., & Shelton, B. E. (2004). The CareNet display: Lessons learned from an in home evaluation of an ambient display. In N. Davies, E. D. Mynatt, & I. Siio (Eds.), Lecture notes in computer science-UbiComp 2004: Ubiquitous computing (Vol. 3205, pp. 1–17). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Corchado, J. M., Bajo, J., de Paz, Y., & Tapia, D. I. (2008, January). Intelligent environment for monitoring alzheimer patients, agent technology for health care. Decision Support Systems (Elsevier), 44(2), 382–396.

    Article  Google Scholar 

  • Corchado, J. M., Bajo, J., Tapia, D. I., & Abraham, A. (2010, March). Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare. IEEE Transactions on Information Technology in Biomedicine (IEEE), 14(2), 234–240.

    Article  Google Scholar 

  • Costa, M. S., & Amaral, J. L. M. (2012). Analysis of wireless industrial automation standards: ISA-100.11a and WirelessHART. ISA. http://www.isa.org/InTechTemplate.cfm?template=/ContentManagement/ContentDisplay.cfm&ContentID=93257. Accessed 28 Aug 2013.

  • Crossbow. (2002a). MICA2. Crossbow. January 1, 2002. http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf. Accessed 3 Feb 2014.

  • Crossbow. (2002b). MICA2DOT. Crossbow. January 1, 2002. http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2dot.pdf. Accessed 5 Feb 2014.

  • Crossbow. (2004a). MPR/MIB user’s manual. Crossbow. August 1, 2004. http://www-db.ics.uci.edu/pages/research/quasar/MPR-MIB%20Series%20User%20Manual%207430-0021-06_A.pdf. Accessed 7 Jan 2014.

  • Crossbow. (2004b). Stargate: X-Scale, processor platform. Crossbow. January 1, 2004. http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/stargate.pdf. Accessed 19 Mar 2014.

  • Crossbow. (2005). Imote2: High-performance wireless sensor network node. Crossbow. January 1, 2005. http://web.univ-pau.fr/~cpham/ENSEIGNEMENT/PAU-UPPA/RESA-M2/DOC/Imote2_Datasheet.pdf. Accessed 19 Mar 2014.

  • Crossbow. (2006a). MICAz. Crossbow. January 1, 2006. http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf. Accessed 5 Feb 2014.

  • Crossbow. (2006b). MOTE-VIEW 1.2 user’s manual. Crossbow. January 1, 2006. http://www.willow.co.uk/MOTE-VIEW_User_Manual_.pdf. Accessed 20 Jan 2014.

  • Crossbow. (2006c). XMesh user’s manual. Crossbow. March 1, 2006. http://eps2009.dj-inod.com/docs/09-03-09/XMesh_Users_Manual_march_2006.pdf. Accessed 8 Jan 2014.

  • Crossbow. (2007). MTS/MDA sensor board users manual. Crossbow. August 1, 2007. http://www.investigacion.frc.utn.edu.ar/sensores/Equipamiento/Wireless/MTS-MDA_Series_Users_Manual.pdf. Accessed 7 Jan 2014.

  • Daǧtas, S., Pekhteryev, G., Sahinoǧlu, Z., Çam, H., & Challa, N. (2008, January). Real-time and secure wireless health monitoring. International Journal of Telemedicine and Applications-Pervasive Health Care Services and Technologies (ACM).

    Google Scholar 

  • Deluge. (2008). Deluge 1.3.6. Deluge. January 1, 2008. http://deluge-torrent.org. Accessed 31 Jan 2014.

  • Dethier, V. G. (1976). The hungry fly: A physiological study of the behavior associated with feeding. Harvard University Press (American Psychological Association).

    Google Scholar 

  • Dictionary.com. (2017). Locomotion. Dictionary.com, LLC. January 1, 2017. http://www.dictionary.com/browse/locomotion. Accessed 28 Jan 2017.

  • Dirafzoon, A., & Lobaton, E. (2013). Topological mapping of unknown environments using an unlocalized robotic swarm. In IEEE/RSJ international conference on Intelligent Robots and Systems (IROS) (pp. 5545–5551). Tokyo, Japan: IEEE/RSJ.

    Google Scholar 

  • Dirafzoon, A., Betthauser, J., Schornick, J., Benavides, D., & Lobaton, E. (2014). Mapping of unknown environments using minimal sensing from a stochastic swarm (IROS). In IEEE/RSJ international conference on intelligent robots and systems (pp. 3842–3849). Chicago, IL: IEEE/RSJ.

    Google Scholar 

  • Downes, I., Rad, L. B., & Aghajan, H. (2006). Development of a mote for wireless image sensor networks. In Cognitive systems and interactive sensors (COGIS). Paris: France.

    Google Scholar 

  • Dubois-Ferrière, H., Fabre, L., Meier, R., & Metrailler, P. (2006). TinyNode: A comprehensive platform for wireless sensor network applications. In The 5th international conference on Information Processing in Sensor Networks (IPSN) (pp. 358–365). Nashville, TN: ACM/IEEE.

    Google Scholar 

  • Duckworth, G. L., Barger, J. E., & Gilbert, D. C. (2001). Acoustic counter-sniper system. US Patent 6178141 B1. January 23.

    Google Scholar 

  • Dudley, R. (2002). The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Dukas, R., & Visscher, P. K. (1994, November). Lifetime learning by foraging honey bees. Animal Behaviour (Elsevier B.V.), 48(5), 1007–1012.

    Article  Google Scholar 

  • Dupont. (2013). Better, stronger and safer with Kevlar® fiber. Dupont. December 19, 2013. http://www.dupont.com/products-and-services/fabrics-fibers-nonwovens/fibers/brands/kevlar.html. Accessed 19 Dec 2013.

  • Electric Machines Committee. (1997). 112-1996 – IEEE standard test procedure for polyphase induction motors and generator. Standards, Electric Machines Committee, IEEE Power Engineering Society, IEEE.

    Google Scholar 

  • Escobar-Alvarez, H. D., et al. (2018). R-ADVANCE: Rapid adaptive prediction for vision-based autonomous navigation, control, and evasion. Journal of Field Robotcs (John Wiley & Sons, Inc.), 91–100.

    Google Scholar 

  • Eswaran, A., Rowe, A., & Rajkumar, R. (2005). Nano-RK: An energy-aware resource-centric RTOS for sensor networks. In 26th IEEE international Real-Time Systems Symposium (RTSS). Miami, FL: IEEE.

    Google Scholar 

  • Everlight Electronics. (2013). Ambient light sensor surface-mount ALS-PT19-315C/L177/TR8. Everlight Electronics. December 24, 2013. https://www.everlight.com/file/ProductFile/201407061531031645.pdf. Accessed 21 June 2020.

  • Fahmy, H. M. A. (2020). Wireless sensor networks: Energy harvesting and management for research and industry. Cham: Springer Nature.

    Book  Google Scholar 

  • Fansler, K. S. (1998). Description of muzzle blast by modified ideal scaling models. Shock and Vibration (IOS Press), 5(1), 1–12.

    Article  Google Scholar 

  • Fariborzi, H., & Moghavvemi, M. (2007). Architecture of a wireless sensor network for vital signs transmission in hospital setting. In International conference on convergence information technology (pp. 745–749). Gyeongju, South Korea: IEEE.

    Google Scholar 

  • Feng, W.-C., Code, B., Kaiser, E., Shea, M., Feng, W.-C., & Bavoil, L. (2003). Panoptes: Scalable low-power video sensor networking technologies. In ACM Multimedia Conference (pp. 652–571). Berkeley, CA: ACM.

    Google Scholar 

  • Feng, W.-C., Kaiser, E., Feng, W. C., & Le Baillif, M. (2005, May). Panoptes: Scalable low-power video sensor networking technologies. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) (ACM), 1(2), 151–167.

    Article  Google Scholar 

  • FOLDOC. (2006). Odometry. The Free On-line Dictionary of Computing, ©Denis Howe 2010. September 11, 2006. http://foldoc.org/odometry. Accessed 28 Jan 2017.

  • Gao, T., et al. (2008). Wireless medical sensor networks in emergency response: Implementation and pilot results. In IEEE conference on technologies for homeland security (pp. 187–192). Waltham, MA: IEEE.

    Google Scholar 

  • Garcia-Morchon, O., & Baldus, H. (2009). The ANGEL WSN security architecture. In Third international conference on sensor technologies and applications (SENSORCOMM) (pp. 430–435). Glyfada, Greece: IEEE.

    Google Scholar 

  • Garcia-Morchon, O., Falck, T., Heer, T., & Wehrle, K. (2009). Security for pervasive medical sensor networks. In 6th annual international mobile and ubiquitous systems: Networking & services (MobiQuitous) (pp. 1–10). Toronto, ON: IEEE.

    Google Scholar 

  • García-Sáez, G., et al. (2009, June). Architecture of a wireless personal assistant for telemedical diabetes care. International Journal of Medical Informatics (Elsevier), 78(6), 391–403.

    Article  Google Scholar 

  • Gardner, J. W., & Varadan, V. K. (2001). Microsensors, mems and smart devices. New York: Wiley.

    Book  Google Scholar 

  • Gazi, V., & Passino, K. M. (2011). Swarm stability and optimization. Springer Science.

    Google Scholar 

  • GBIF. (2016). Gromphadorhina Portentosa. Global Biodiversity Information Facility. January 1, 2016. http://www.gbif.org/species/113191345. Accessed 30 Jan 2017.

  • George, J., & Kaplan, L. M. (2011). Shooter localization using soldier-worn gunfire detection systems. In The 14th international conference on information fusion (pp. 398–405). Chicago, IL: Office of Naval Research and U.S. Army Research Laboratory.

    Google Scholar 

  • Geospace Technologies. (2014a). Geophones GS-11D. Geospace Technologies. January 1, 2014. http://www.geospace.com/geophones-gs-11d/. Accessed 1 Feb 2014.

  • Geospace Technologies. (2014b). GS-1 low frequency seismometer. Geospace Technologies. January 1, 2014. http://www.geospace.com/tag/gs-1-low-frequency-seismometer/. Accessed 1 Feb 2014.

  • Ghosh, P., Gasparri, A., Jin, J., & Krishnamachari, B. (2019). Robotic wireless sensor networks. In H. Ammari (Ed.), Mission-oriented sensor networks and systems: Art and science. Studies in systems, decision and control (Vol. 164, pp. 345–595). Springer Nature.

    Google Scholar 

  • Girod, B., Aaron, A. M., Rane, S., & Rebollo-Monedero, D. (2005, January). Distributed video coding. Proceedings of the IEEE (IEEE), 93(1), 71–83.

    Article  MATH  Google Scholar 

  • Glyn Store. (2013). Bluegiga WT12 - Class 2 Bluetooth 2.1 + EDR Module. Glyn Store. December 19, 2013. http://www.glynstore.com/bluegiga-wt12-class-2-bluetooth-2-1-edr-module/. Accessed 19 Dec 2013.

  • Goldsmith, A. J., & Varaiya, P. P. (1997, November). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory (IEEE), 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  • Gu, Y., Ren, F., Ji, Y., & Li, J. (2016, First Quarter). The evolution of sink mobility management in wireless sensor networks: A survey. Communications Surveys & Tutorials (IEEE), 18(1), 507–524.

    Google Scholar 

  • Gungor, V. C., & Hancke, G. P. (2009, October). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics (IEEE), 56(10), 4258–4265.

    Article  Google Scholar 

  • Gungora, V. C., Vurana, M. C., & Akan, O. B. (2007, August). On the cross-layer interactions between congestion and contention in wireless sensor and actor networks. Ad Hoc Networks (Elsevier), 5(6), 897–909.

    Article  Google Scholar 

  • Gutiérrez, J. A., Callaway, E. H., & Barrett, R. L. (2004). Low-rate wireless personal area networks: Enabling wireless sensors with IEEE 802.15.4. New York: IEEE.

    Google Scholar 

  • Habetler, T. G., Harley, R. G., Tallam, R. M., Lee, S., Obaid, R., & Stack, J. (2002). Complete current-based induction motor condition monitoring: Stator, rotor, bearings, and load. In 8th IEEE international power electronics congress (CIEP) (pp. 3–8). Guadalajara, Mexico: IEEE.

    Google Scholar 

  • Hagen, M., Wikelski, M., & Kissling, W. D. (2011, May). Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE, 6(5).

    Google Scholar 

  • Hakala, I., Ihalainen, J., Kivelä, I., & Tikkakoski, M. (2010, September). Evaluation of environmental wireless sensor network – Case foxhouse. International Journal on Advances in Networks and Services, 3(1,2), 29–39.

    Google Scholar 

  • Han, C.-C., Kumar, R., Shea, R., Kohler, E., & Srivastava, M. (2005). A dynamic operating system for sensor nodes. In The 3rd international conference on mobile systems, applications, and services (MobiSys) (pp. 163–176). Seattle, WA: ACM.

    Chapter  Google Scholar 

  • Hart, J. K., & Martinez, K. (2006, October). Environmental sensor networks: A revolution in the earth system science? Earth-Science Reviews (Elsevier), 78(3/4), 177–191.

    Article  Google Scholar 

  • Heinzelman, W., Chandrakasan, A. P., & Balakrishnan, H. (2002, October). An application specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communication (IEEE), 1(4), 660–670.

    Article  Google Scholar 

  • Hengstler, S., Prashanth, D., Fong, S., & Aghajan, H. (2007). MeshEye: A hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In The 6th international conference on Information Processing in Sensor Networks (IPSN) (pp. 360–369). Cambridge, MA: ACM/IEEE.

    Google Scholar 

  • Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007, January). A survey of recent results in networked control systems. Proceedings of the IEEE (IEEE), 95(1), 138–162.

    Article  Google Scholar 

  • Hill, J. L., & Culler, D. E. (2002, November/December). Mica: A wireless platform for deeply embedded networks. IEEE Micro (IEEE), 22(6), 12–24.

    Google Scholar 

  • Himax. (2015). HM01B0 ultra low power CIS. Himax Technologies, Inc. January 1, 2015. https://www.himax.com.tw/products/cmos-image-sensor/image-sensors/hm01b0/. Accessed 21 June 2020.

  • Ho, L., Moh, M., Walker, Z., Hamada, T., & Su, C.-F. (2005). A prototype on RFID and sensor networks for elder healthcare: Progress report. In The ACM SIGCOMM workshop on experimental approaches to wireless network design and analysis (E-WIND) (pp. 70–75). Philadelphia, PA: ACM.

    Google Scholar 

  • Holman, R., Stanley, J., & Ozkan-Haller, T. (2003). Applying video sensor networks to nearshore environment monitoring. IEEE Pervasive Computing (IEEE), 2(4), 14–21.

    Article  Google Scholar 

  • Honeywell. (2012). Digital compass solutions HMR3300. Honeywell. 2012. http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/MissilesMunitions-documents/HMR3300_Datasheet.pdf. Accessed 19 Dec 2013.

  • Howitt, I., Manges, W. W., Kuruganti, P. T., Allgood, G., Gutierrez, J. A., & Conrad, J. M. (2006, July). Wireless industrial sensor networks: Framework for QoS assessment and QoS management. ISA Transactions (Elsevier), 45(3), 347–359.

    Article  Google Scholar 

  • Hsu, J. S., & Scoggins, B. P. (1995, September). Field test of motor efficiency and load changes through air-gap torque. IEEE Transactions on Energy Conversion (IEEE), 10(3), 477–483.

    Article  Google Scholar 

  • Hsu, J. S., Kueck, J. D., Olszewski, M., Casada, D. A., Otaduy, P. J., & Tolbert, L. M. (1998, January/February). Comparison of induction motor field efficiency evaluation methods. IEEE Transactions on Industry Applications (IEEE), 34(1), 117–125.

    Google Scholar 

  • Hu, F., Jiang, M., Celentano, L., & Xiao, Y. (2008, September). Robust medical Ad hoc Sensor Networks (MASN) with Wavelet-based ECG data mining. Ad Hoc Networks (Elsevier), 6(7), 986–1012.

    Article  Google Scholar 

  • Huang, X., Habetler, T. G., & Harley, R. G. (2007). Detection of rotor eccentricity faults in a closed-loop drive-connected induction motor using an artificial neural network. IEEE Transactions on Power Electronics (IEEE), 22(4), 1552–1559.

    Article  Google Scholar 

  • Huang, H., Savkin, A. V., Ding, M., & Huang, C. (2019, January). Mobile robots in wireless sensor networks: A survey on tasks. Computer Networks (Elsevier B.V.), 148, 1–19.

    Article  Google Scholar 

  • Huircán, J. I., et al. (2010, November). Zigbee-based wireless sensor network localization for cattle monitoring in grazing fields. Computers and Electronics in Agriculture (Elsevier), 74(2), 258–264.

    Article  Google Scholar 

  • Hwang, S.-W., et al. (2012, September). A physically transient form of silicon electronics. Science (American Association for the Advancement of Science (AAAS)), 337(6102), 1640–1644.

    Article  Google Scholar 

  • IEEE. (2013a). IEEE 802.15 working group for WPAN. http://grouper.ieee.org/groups/802/15/. Accessed 15 Sept 2013.

  • IEEE. (2013b). IEEE 802.15 WPAN task group 3 (TG3). www.ieee802.org/15/pub/TG3.html. Accessed 15 Sept 2013.

  • Ingelrest, F., Barrenetxea, G., Schaefer, G., Vetterli, M., Couach, O., & Parlange, M. (2010). SensorScope: Application-specific sensor network for environmental monitoring. ACM Transactions on Sensor Networks (TOSN) (ACM), 6(2), 17.1–17.32.

    Google Scholar 

  • Intel. (2000). Intel StrongARM* SA-1110 Microprocessor. Intel. April 1, 2000. http://access.ee.ntu.edu.tw/course/SoC_Lab_961/reference/StrongARM%20Datasheet.pdf. Accessed 23 Mar 2014.

  • Intel. (2005a). Intel PXA270 processor. Intel. January 1, 2005. http://www.armkits.com/download/PXA270datasheet.pdf. Accessed 2 Apr 2014.

  • Intel. (2005b). Intel StrataFlash embedded memory (P30). Intel. November 1, 2005. http://www.xilinx.com/products/boards/ml505/datasheets/30666604.pdf. Accessed 3 Apr 2014.

  • Intille, S. S., et al. (2003). Tools for studying behavior and technology in natural settings. In A. K. Dey, A. Schmidt, & J. F. McCarthy (Eds.), UbiComp 2003: Ubiquitous computing (Vol. 2864, pp. 157–174). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Iyer, V., Nandakumar, R., Wang, A., Fuller, S., & Gollakota, S. (2019). Living IoT: A flying wireless platform on live insects. In The 25th international conference on mobile computing and networking (Mobicom). Los Cabos, Mexico: ACM.

    Google Scholar 

  • Johnson, D., Stack, T., Flickinger, D. M., Stoller, L., Ricci, R., & Lepreau, J. (2006). Mobile emulab: A robotic wireless and sensor network testbed. In The 25th conference on computer communications (INFOCOM). EEE: Barcelona, Spain.

    Google Scholar 

  • Jurik, A. D., & Weaver, A. C. (2008, April). Remote medical monitoring. Computer (IEEE), 41(4), 96–99.

    Article  Google Scholar 

  • Kaplan, L. M., Damarla, T., & Pham, T. (2008). QoI for passive acoustic gunfire localization. In The 5th IEEE international conference on Mobile Ad Hoc and Sensor Systems (MASS) (pp. 754–759). Atlanta, GA: IEEE.

    Google Scholar 

  • Kerhet, A., Magno, M., Leonardi, F., Boni, A., & Benini, L. (2007, December). A low-power wireless video sensor node for distributed object detection. Journal of Real-Time Image Processing (Springer-Verlag), 2(4), 331–342.

    Article  Google Scholar 

  • Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors (MDPI), 14(2), 2510–2548.

    Article  Google Scholar 

  • Kim, D., Sanchez Lopez, T., Yoo, S., & Sung, J. (2005a). ANTS platform for evolvable wireless sensor networks. In The 2005 IFIP international conference on Embedded and Ubiquitous Computing (EUC). Nagasaki, Japan: Springer.

    Google Scholar 

  • Kim, D., López, T. S., Sung, S. Y., Kim, J., Kim, Y., & Doh, Y. (2005b). ANTS: An evolvable network of tiny sensors. In L. T. Yang, M. Amamiya, Z. Liu, M. Guo, & F. J. Rammig (Eds.), Lecture notes in computer science-Embedded and Ubiquitous Computing (EUC) (Vol. 3824, pp. 142–151). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kim, A. N., Hekland, F., Petersen, S., & Doyle, P. (2008a). When HART goes wireless: Understanding and implementing the WirelessHART standard. In IEEE international conference on Emerging Technologies and Factory Automation (ETFA) (pp. 899–907). Hamburg, Germany: IEEE.

    Google Scholar 

  • Kim, J.-H., Kwon, H., Kim, D.-H., Kwak, H.-Y., & Lee, S.-J. (2008b). Building a service-oriented ontology for wireless sensor networks. In Seventh IEEE/ACIS International Conference on Computer and Information Science (ICIS) (pp. 649–654). Portland, OR: IEEE.

    Google Scholar 

  • Kissling, W. D., Pattemore, D. E., & Hagen, M. (2014). Challenges and prospects in the telemetry of insects. Biological Reviews (John Wiley & Sons, Inc.), 89, 511–530.

    Google Scholar 

  • Kleihorst, R., Abbo, A., Schueler, B., & Danilin, A. (2007a). Camera mote with a high-performance parallel processor for real-time frame-based video processing. In First ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 109–116). Vienna, Austria: ACM/IEEE.

    Google Scholar 

  • Kleihorst, R., Schueler, B., & Danilin, A. (2007b). Architecture and applications of wireless smart cameras. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 1373–1376). Singapore: IEEE.

    Google Scholar 

  • Koh, S. J. (2006). RF characteristics of Mica-Z wireless sensor network motes. Thesis, Naval Postgraduate School, Monterey, CA: Naval Postgraduate School.

    Google Scholar 

  • Konstantas, D., & Herzog, R. (2003). Continuous monitoring of vital constants for mobile users: The MobiHealth approach. In The 25th annual international conference of the IEEE Engineering in Medicine and Biology Society, 2003 (IEEE-EMBS) (pp. 3728–3731). Kyoto, Japan: IEEE.

    Google Scholar 

  • Kuckertz, P., Ansari, J., Riihijarvi, J., & Mahonen, P. (2007). Sniper fire localization using wireless sensor networks and genetic algorithm based data fusion. In Military Communications Conference (MILCOM) (pp. 1–8). Orlando, FL: IEEE.

    Google Scholar 

  • Kulkarni, P., Ganesan, D., Shenoy, P., & Lu, Q. (2005). SensEye: A multi-tier camera sensor network. In The 13th annual ACM international conference on multimedia (MULTIMEDIA) (pp. 229–238). Singapore: ACM.

    Chapter  Google Scholar 

  • Kumar, P., & Rao, T. V. (2008). Communication in personal healthcare. In The 3rd international conference on Communication Systems Software and Middleware and Workshops (COMSWARE) (pp. 66–73). Bangalore, India: IEEE.

    Google Scholar 

  • Kuran, M. S., & Tugcu, T. (2007, August). A survey on emerging broadband wireless access technologies. Computer Networks (Elsevier), 51(11), 3013–3046.

    Article  Google Scholar 

  • Kurkowski, S., Camp, T., & Colagrosso, M. (2005, October). MANET simulation studies: The incredibles. ACM SIGMOBILE Mobile Computing and Communications Review – Special Issue on Medium Access and Call Admission Control Algorithms for Next Generation Wireless Networks (ACM), 9(4), 50–61.

    Google Scholar 

  • Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007, July). Wireless power transfer via strongly coupled magnetic resonances. Science (American Association for the Advancement of Science (AAAS)), 317(5834), 83–86.

    Article  MathSciNet  Google Scholar 

  • Kusy, B., Ledeczi, A., Maroti, M., & Meertens, L. (2006a). Node density independent localization. In The 5th international conference on Information Processing in Sensor Networks (IPSN) (pp. 441–448). Nashville, TN: ACM/IEEE.

    Google Scholar 

  • Kusy, B., Dutta, P., Levis, P., Maroti, M., Ledeczi, A., & Culler, D. (2006b). Elapsed time on arrival: A simple and versatile primitive for canonical time synchronisation services. International Journal of Ad Hoc and Ubiquitous Computing (Inderscience Publishers), 1(4), 239–251.

    Article  Google Scholar 

  • Lahtela, A., Hassinen, M., & Jylha, V. (2008). RFID and NFC in healthcare: Safety of hospitals medication care. In Second international conference on pervasive computing technologies for healthcare (pp. 241–244). Tampere, Finland: IEEE.

    Google Scholar 

  • Lai, C.-C., Lee, R.-G., Hsiao, C.-C., Liu, H.-S., & Chen, C.-C. (2009, November). A H-Qos-demand personalized home physiological monitoring system over a wireless multi-hop relay network for mobile home healthcare applications. Journal of Network and Computer Applications (Elsevier), 32(6), 1229–1241.

    Article  Google Scholar 

  • Lamprinos, I. E., Prentza, A., Sakka, E., & Koutsouris, D. (2006). Energy-efficient MAC protocol for patient personal area networks. In 27th annual international conference of the Engineering in Medicine and Biology Society (IEEE-EMBS) (pp. 3799–3802). Shanghai, China: IEEE.

    Google Scholar 

  • Langendoen, K., Baggio, A., & Visser, O. (2006). Murphy Loves Potatoes: Experiences from a Pilot Sensor Network Deployment in Precision Agriculture. In The 20th International Parallel and Distributed Processing Symposium (IPDPS). Rhodes Island, Greece.

    Google Scholar 

  • Latif, T., & Bozkurt, A. (2012). Line following terrestrial insect biobots. In 34th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 972–975). San Diego, CA: IEEE.

    Google Scholar 

  • Latif, T., Whitmire, E., Novak, T., & Bozkurt, A. (2014). Towards fenceless boundaries for solar powered insect biobots. In The 36th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1670–1673). Chicago, USA: IEEE.

    Google Scholar 

  • Latif, T., Whitmire, E., Novak, T., & Bozkurt, A. (2016, May). Sound localization sensors for search and rescue biobots. Sensors Journal (IEEE), 16(10), 3444–3453.

    Article  Google Scholar 

  • Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011, January). A survey on wireless body area networks. Wireless Networks (ACM), 17(1), 1–18.

    Article  Google Scholar 

  • Lédeczi, A., et al. (2005, November). Countersniper system for urban warfare. ACM Transactions on Sensor Networks (TOSN) (ACM), 1(2), 153–177.

    Article  Google Scholar 

  • Ledeczi, A., et al. (2005). Multiple simultaneous acoustic source localization in Urban Terrain. In Fourth international symposium on Information Processing in Sensor Networks (IPSN) (pp. 491–496). Los Angeles, CA: ACM/IEEE.

    Google Scholar 

  • Lee, Y.-D., & Chung, W.-Y. (2009, July). Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sensors and Actuators B: Chemical (Elsevier), 140(2), 390–395.

    Article  Google Scholar 

  • Lee, S. W., Kim, Y. J., Lee, G. S., Cho, B. O., & Lee, N. H. (2007). A remote behavioral monitoring system for elders living alone. In 2007 international conference on control, automation and systems (pp. 2725–2730). Warsaw, Poland.

    Google Scholar 

  • Lee, H., Park, K., Lee, B., Choi, J., & Elmasri, R. (2008). Issues in data fusion for healthcare monitoring. In The 1st international conference on Pervasive Technologies Related to Assistive Environments (PETRA). Arlington, TX: ACM.

    Google Scholar 

  • Lee, H. J., et al. (2009, March). Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. International Journal of Medical Informatics (Elsevier), 78(3), 193–198.

    Article  Google Scholar 

  • Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010, October). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture (Elsevier B.V.), 74(1), 2–33.

    Article  Google Scholar 

  • Lei, S., Xu, H., Xiaoling, W., Lin, Z., Cho, J., & Lee, S. (2006). VIP bridge: Integrating several sensor networks into one virtual sensor network. In International Conference on Internet Surveillance and Protection (ICISP). Cote d’Azur, France: IEEE.

    Google Scholar 

  • Leister, W., Abie, H., Groven, A.-K., Fretland, T., & Balasingham, I. (2008). Threat assessment of wireless patient monitoring systems. In 3rd international conference on Information and Communication Technologies: From Theory to Applications (ICTTA) (pp. 1–6). Damascus, Syria: IEEE.

    Google Scholar 

  • Li, M., & Liu, Y. (2007). Underground structure monitoring with wireless sensor networks. In The 6th international conference on Information Processing in Sensor Networks (IPSN) (pp. 69–78). Cambridge, MA: ACM/IEEE.

    Google Scholar 

  • Li, J., & Mohapatra, P. (2007, June). Analytical modeling and mitigation techniques for the energy hole problem in sensor networks. Pervasive and Mobile Computing (Elsevier B.V.), 3(3), 233–254.

    Article  Google Scholar 

  • Lindgren, D., Wilsson, O., Gustafsson, F., & Habberstad, H. (2009). Shooter localization in wireless sensor networks. In The 12th international conference on information fusion (FUSION) (pp. 404–411). Seattle, WA: IEEE.

    Google Scholar 

  • Linear Technology. (2014). Wireless sensor networks-dust networks. Linear Technology. January 1, 2014. http://www.linear.com/products/wireless_sensor_networks_-_dust_networks. Accessed 5 Mar 2014.

  • Liotta, B. (2000). Bitsy’ 3 x 4-inch board totes StrongARM. EE Times. UBM Tech. September 27, 2000. http://www.eetimes.com/document.asp?doc_id=1289616. Accessed 14 Apr 2014.

  • LOFAR. (2014). Agriculture. LOFAR. January 1, 2014. http://www.lofar.org/agriculture/fighting-phytophtora-using-micro-climate/fighting-phytophtora-using-micro-climate. Accessed 31 Jan 2014.

  • Logitech. (2001). Logitech to Acquire Labtec Inc. Logitech. February 7, 2001. http://ir.logitech.com/releasedetail.cfm?ReleaseID=174502. Accessed 7 Apr 2014.

  • Logitech. (2004). QuickCam Zoom. Logitech. October 27, 2004. http://www.logitech.com/en-us/support/3377. Accessed 7 Apr 2014.

  • Lopez-Nores, M., Pazos-arias, J., Garcia-Duque, J., & Blanco-Fernandez, Y. (2008). Monitoring medicine intake in the networked home: The iCabiNET solution. In Second international conference on pervasive computing technologies for healthcare (pp. 116–117). Tampere, Finland: IEEE.

    Google Scholar 

  • Lu, B., Wu, L., Habetler, T. G., Harley, R. G., & Gutierrez, J. A. (2005). On the application of wireless sensor networks in condition monitoring and energy usage evaluation for electric machines. In 31st annual conference of IEEE Industrial Electronics Society (IECON). Raleigh, NC: IEEE.

    Google Scholar 

  • Lu, B., Habetler, T. G., & Harley, R. G. (2006, July/August). A survey of efficiency-estimation methods for in-service induction motors. IEEE Transactions on Industry Applications (IEEE), 42(4), 924–933.

    Google Scholar 

  • Lymberopoulos, D., & Savvides, A. (2005). XYZ: A motion-enabled, power aware sensor node platform for distributed sensor network applications. In Fourth international symposium on Information Processing in Sensor Networks (IPSN) (pp. 449–454). Los Angeles, CA: ACM/IEEE.

    Google Scholar 

  • Ma, Y., & Aylor, J. H. (2004, July/August). System lifetime optimization for heterogeneous sensor networks with a hub-spoke technology. IEEE Transactions on Mobile Computing (IEEE), 3(3), 286–294.

    Google Scholar 

  • Mangharam, R., Rowe, A., & Rajkumar, R. (2007, December). FireFly: A cross-layer platform for real-time embedded wireless networks. Real-Time Systems (Springer), 37(3), 183–231.

    Article  MATH  Google Scholar 

  • Maróti, M. (2004). Directed flood-routing framework for wireless sensor networks. In The 5th ACM/IFIP/USENIX international conference on middleware (pp. 99–114). Toronto, Canada: ACM/IFIP/USENIX.

    Google Scholar 

  • Maroti, M., Simon, G., Ledeczi, A., & Sztipanovits, J. (2004, August). Shooter localization in Urban Terrain. Computer (IEEE), 37(8), 60–61.

    Article  Google Scholar 

  • Maróti, M., et al. (2005). Radio interferometric geolocation. In The 3rd international conference on embedded networked sensor systems (SenSys) (pp. 1–12). San Diego, CA: ACM.

    Google Scholar 

  • Marques, O., Chilamakuri, P., Bowser, S., & Woodworth, J. (2004). Wireless multimedia technologies for assisted living. In Second LACCEI international Latin American and Caribbean Conference for Engineering and Technology (LACCEI). Miami, FL.

    Google Scholar 

  • Martinez, A. W., Phillips, S. T., Carrilho, E., Thomas, S. W., Sindi, H., & Whitesides, G. M. (2008, April). Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Analytical Chemistry (American Chemical Society), 80(10), 3699–3707.

    Google Scholar 

  • Massachusetts Institute of Technology. (2014). Transportation Research Center (ITRC). Massachusetts Institute of Technology. January 7, 2014. http://www-mtl.mit.edu/researchgroups/itrc/. Accessed 7 Jan 2014.

  • Maxim Integrated. (2008). DS18B20 programmable resolution 1-wire digital thermometer. Maxim Integrated. Janaury 1, 2008. http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf. Accessed 6 Apr 2014.

  • MaxStream. (2007). XBeeTM/XBee-PROTM OEM RF modules. MaxStream. January 1, 2007. https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Manual.pdf. Accessed 9 Mar 2014.

  • Medeiros, H., Park, J., & Kak, A. C. (2008, August). Distributed object tracking using a cluster-based kalman filter in wireless camera networks. IEEE Journal of Selected Topics in Signal Processing (IEEE), 2(4), 448–463.

    Article  Google Scholar 

  • Merriam Webster. (2014). microclimate. Merriam Webster. January 1, 2014. http://www.merriam-webster.com/dictionary/microclimate. Accessed 31 Jan 2014.

  • Meshkova, E., Riihijarvi, J., Oldewurtel, F., Jardak, C., & Mahonen, P. (2008). Service-oriented design methodology for wireless sensor networks: A view through case studies. In IEEE international conference on Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC) (pp. 146–153). Taichung, Taiwan: IEEE.

    Google Scholar 

  • Microchip. (2000). PIC18 microcontroller family. Microchip. January 1, 2000. http://ww1.microchip.com/downloads/en/DeviceDoc/30327b.pdf. Accessed 26 Jan 2014.

  • Moeller, R., & Sleman, A. (2008). Wireless networking services for implementation of ambient intelligence at home. In 7th International Caribbean Conference on Devices, Circuits and Systems (ICCDCS). Cancun, Mexico: IEEE.

    Google Scholar 

  • Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. Rfc 4944, Internet Engineering Task Force.

    Google Scholar 

  • Moog Crossbow. (2013). Aerospace and defense systems. Moog Crossbow. 2013. http://xbow.com/products/inertial-products/. Accessed 7 Dec 2013.

  • Moroz, S. A., Pierson, R. B., Ertem, M. C., & Burchick, D. A., Sr. (1999). Airborne deployment of and recent improvements to the viper counter sniper system. Washington, DC: Online, Naval Research Lab, Online Information for the Defense Community.

    Google Scholar 

  • Morris, D., Coyle, S., Wu, Y., Lau, K. T., Wallace, G., & Diamond, D. (2009, May). Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sensors and Actuators B: Chemical (Elsevier), 138(1), 231–236.

    Article  Google Scholar 

  • Moteiv. (2004). Telos: Ultra low power IEEE 802.15.4 compliant wireless sensor module. Moteiv. May 12, 2004. http://www2.ece.ohio-state.edu/~bibyk/ee582/telosMote.pdf. Accessed 27 Mar 2014.

  • Moteiv. (2006). Tmote sky data sheet: Ultra low power IEEE 802.15.4 compliant wireless sensor module. Moteiv. June 2, 2006. http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf. Accessed 3 Jan 2014.

  • Mrazovac, B., Bjelica, M. Z., Kukolj, D., Todorovic, B. M., & Samardzija, D. (2012, August). A human detection method for residential smart energy systems based on Zigbee RSSI changes. IEEE Transactions on Consumer Electronics (IEEE), 58(3), 819–824.

    Article  Google Scholar 

  • Murata Manufacturing Co. (2012). Pyroelectric infrared sensors. Murata Manufacturing Co. October 1, 2012. http://www.murata.com/products/catalog/pdf/s21e.pdf. Accessed 6 Mar 2014.

  • Murphy, R. R. (2004, September). Trial by fire [rescue robots]. Robotics & Automation Magazine (IEEE), 11(3), 50–61.

    Article  Google Scholar 

  • Naderiparizi, N., Hessar, M., Talla, V., Gollakota, S., & Smith, J. R. (2018). Towards battery-free HD video streaming. In The 15th symposium on Networked Systems Design and Implementation (NSDI) (pp. 233–247). Renton, WA: USENIX.

    Google Scholar 

  • Ng, H. S., Sim, M. L., & Tan, C. M. (2006, April). Security Issues of Wireless Sensor Networks in Healthcare Applications. BT Technology Journal (Kluwer Academic), 24(2), 138–144.

    Article  Google Scholar 

  • NI. (2019). What is I/Q data? National Instruments, Inc. October 16, 2019. http://www.ni.com/tutorial/4805/en/. Accessed 21 June 2020.

  • Nordic Semiconductor. (2004). nRF24E1: 2.4GHz RF transceiver with embedded 8051 compatible micro-controller and 9 input, 10 bit ADC. Nordic Semiconductor. June 1, 2004. http://www.datasheetarchive.com/dlmain/Datasheets-23/DSA-442985.pdf. Accessed 21 Mar 2014.

  • NXP. (2020). KL0x: Kinetis® KL0x-48 MHz, Entry-level ultra-low power microcontrollers (MCUs) based on Arm® Cortex®-M0+ Core. NXP. January 1, 2020. https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kl-series-cortex-m0-plus/kinetis-kl0x-48-mhz-entry-level-ultra-low-power-microcontrollers-mcus-based-on-arm-cortex-m0-plus-core:KL0x. Accessed 21 June 2020.

  • Nyan, M. N., Tay, F. E. H., & Murugasu, E. (2008, December). A wearable system for pre-impact fall detection. Journal of Biomechanics (Elsevier), 41(16), 3475–3481.

    Article  Google Scholar 

  • Oki Semiconductor. (2004). ML675K Series. Oki Semiconductor. February 1, 2004. http://www.keil.com/dd/docs/datashts/oki/ml675xxx_ds.pdf. Accessed 21 Mar 2014.

  • Omeni, O., Wong, A., Burdett, A. J., & Toumazou, C. (2008, December). Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on Biomedical Circuits and Systems (IEEE), 2(4), 251–259.

    Article  Google Scholar 

  • OmniVision Technologies. (1999). OV6620/OV6120. OmniVision Technologies. June 1, 1999. http://coecsl.ece.illinois.edu/ge423/datasheets/DS-OV6620-1.2.pdf. Accessed 29 Mar 2014.

  • OmniVision Technologies. (2002). OVT OV528: Single chip camera-to-serial bridge. OmniVision Technologies. October 10, 2002. http://www.datasheet-pdf.com/datasheet-html/O/V/5/OV528-OmniVision.pdf.html. Accessed 29 Mar 2014.

  • OmniVision Technologies. (2003). OV7640 color CMOS VGA (640 x 480) CAMERACHIP, OV7140 B&W CMOS VGA (640 x 480) CAMERACHIP. OmniVision Technologies. January 15, 2003. http://www.datasheet4u.com/datasheet/O/V/7/OV7640_OmniVision.pdf.html. Accessed 27 Mar 2014.

  • OmniVision Technologies. (2006). OV9655/OV9155 CMOS SXGA (1.3 MegaPixel) CameraChip sensor with OmniPixel technology. OmniVision Technologies. November 21, 2006. http://www.surveyor.com/blackfin/OV9655-datasheet.pdf. Accessed 2 Apr 2014.

  • OmniVision Technologies. (2011). About us. OmniVision Technologies. January 1, 2011. http://www.ovt.com/aboutus/. Accessed 27 Mar 2014.

  • OpenCV. (2014). OpenCV (Open Source Computer Vision). OpenCV. January 1, 2014. http://opencv.org. Accessed 2 Apr 2014.

  • Osmani, V., Balasubramaniam, S., & Botvich, D. (2008, November). Human activity recognition in pervasive health-care: Supporting efficient remote collaboration. Journal of Network and Computer Applications (Elsevier), 31(4), 628–655.

    Article  Google Scholar 

  • Oxford Dictionaries. (2014). Environment. Oxford Dictionaries January 1, 2014. http://www.oxforddictionaries.com/definition/english/environment?q=environment. Accessed 22 Jan 2014.

  • Paganelli, F., & Giuli, D. (2007). An ontology-based context model for home health monitoring and alerting in chronic patient care networks. In 21st international conference on Advanced Information Networking and Applications Workshops (AINAW) (pp. 838–845). Niagara Falls, Canada: IEEE.

    Google Scholar 

  • Paganelli, F., Spinicci, E., & Giuli, D. (2008, January). ERMHAN: A context-aware service platform to support continuous care networks for home-based assistance. International Journal of Telemedicine and Applications-Pervasive Health Care Services and Technologies (ACM), 2008, 1–13.

    Google Scholar 

  • Panasonic Corporation. (2013). Omnidirectional back electret condenser microphone cartridge. Panasonic Corporation. December 19, 2013. http://industrial.panasonic.com/www-data/pdf/ABA5000/ABA5000CE11.pdf. Accessed 19 Dec 2013.

  • Pang, Z., Chen, Q., & Zheng, L. (2009). A pervasive and preventive healthcare solution for medication noncompliance and daily monitoring. In 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL) (pp. 1–6). Bratislava, Slovakia: IEEE.

    Google Scholar 

  • Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013, Second Quarter). Energy-efficient routing protocols in wireless sensor networks: A survey. Communications Surveys & Tutorials (IEEE), 15(2), 551–591.

    Google Scholar 

  • Park, C., & Chou, P. H. (2006a). eCAM: Ultra compact, high data-rate wireless sensor node with a miniature camera. In The 4th international conference on embedded networked sensor systems (SenSys) (pp. 359–360). Boulder, CO: ACM.

    Chapter  Google Scholar 

  • Park, C., & Chou, P. H. (2006b). Eco: Ultra-wearable and expandable wireless sensor platform. In International workshop on wearable and implantable Body Sensor Networks (BSN) (pp. 162–165). Cambridge, MA: IEEE.

    Chapter  Google Scholar 

  • Park, P., Fischione, C., Bonivento, A., Johansson, K. H., & Sangiovanni-Vincent, A. (2011, June). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Transactions on Mobile Computing (IEEE), 10(6), 821–838.

    Article  Google Scholar 

  • Pawar, P., Van Beijnum, B.-J., Van Sindere, M., Aggarwal, A., Maret, P., & De Clercq, F. (2008, October). Performance evaluation of the context-aware handover mechanism for the nomadic mobile services in remote patient monitoring. Computer Communications – Performance Evaluation of Communication Networks (SPECTS 2007) (Elsevier), 31(16), 3831–3842.

    Google Scholar 

  • Penders, J., et al. (2011). A robot swarm assisting a human fire-fighter. Advanced Robotics (Taylor & Francis Online), 25(1/2), 93–117.

    Article  Google Scholar 

  • Perrig, A., Stankovic, J., & Wagner, D. (2004, June). Security in wireless sensor networks. Communications of the ACM – Wireless Sensor Networks (ACM), 47(6), 53–57.

    Google Scholar 

  • Petersen, S., Doyle, P., Vatland, S., Aasland, C. S., Andersen, T. M., & Sjong, D. (2007). Requirements, drivers and analysis of wireless sensor network solutions for the oil & gas industry. In IEEE conference on Emerging Technologies and Factory Automation (ETFA) (pp. 219–226). Patras, Greece: IEEE.

    Google Scholar 

  • Petersen, S., et al. (2008). A survey of wireless technology for the oil and gas industry. SPE Projects, Facilities & Construction (Society of Petroleum Engineers), 3(4), 1–8.

    Article  Google Scholar 

  • Philipose, M., et al. (2004). Fast, detailed inference of diverse daily human activities. In The seventeenth annual ACM symposium on user interface software and technology. Santa Fe, NM: ACM.

    Google Scholar 

  • Philips. (2002). PCF50606/605: Single-chip power management unit+. Philips. May 1, 2002. http://www.datasheetarchive.com/dl/Datasheet-03/DSA0051772.pdf. Accessed 3 Apr 2014.

  • Philips. (2004). Philips LPC2106 (ARM) board, RS232, 16x2 LCD, Relay & Buzzer. Philips. June 18, 2004. http://microcontrollershop.com/product_info.php?products_id=644. Accessed 29 Mar 2014.

  • Pister, K. S. J., & Doherty, L. (2008). TSMP: Time Synchronized Mesh Protocol. In Parallel and Distributed Computing and Systems (PDCS). Acta: Orlando, Fl.

    Google Scholar 

  • Polastre, J., Szewczyk, R., & Culler, D. (2005). Telos: Enabling ultra-low power wireless research. In Fourth international symposium on Information Processing in Sensor Networks (IPSN) (pp. 364–369). Los Angeles, CA: ACM/IEEE.

    Google Scholar 

  • PostgreSQL. (2013). PostgreSQL 2013-12-05 update release. December 5, 2013. http://www.postgresql.org. Accessed 7 Jan 2014.

  • Pui Audio. (2008). Electret condenser microphone basics. Pui Audio. January 1, 2008. http://www.digikey.com/Web%20Export/Supplier%20Content/PUI_668/PDF/PUI_ElectretCondenserMicrophone%20Basics.pdf?redirected=1. Accessed 5 Mar 2014.

  • Qimonda AG. (2006). HYB18L512160BF-7.5 DRAMs for mobile applications 512-Mbit mobile-RAM. Qimonda AG. December 1, 2006. http://www.datasheet4u.com/datasheet/H/Y/B/HYB18L512160BF-75_QimondaAG.pdf.html. Accessed 2 Apr 2014.

  • Rahimi, M., et al. (2005). Cyclops: In situ image sensing and interpretation in wireless sensor networks. In The 3rd international conference on embedded networked sensor systems (SenSys) (pp. 192–204). San Diego, CA: ACM.

    Chapter  Google Scholar 

  • RainSun. (2009). AN9520: Multilayer chip antenna for 2.4 GHz wireless communication. RainSun. August 1, 2009. http://www.compotek.com/fileadmin/Datenblaetter/Antennen/9_SMD/RainSun_AN9520_ds_2.3.pdf. Accessed 21 Mar 2014.

  • Rappaport, T. S. (2002). Wireless communications: Principles and practice. New Jersey: Prentic Hall.

    MATH  Google Scholar 

  • Raytheon. (2014). Raytheon BBN technologies. Raytheon. January 1, 2014. http://www.raytheon.com/ourcompany/bbn/index.html. Accessed 27 Dec 2014.

  • Reeves, A. A. (2005). Remote monitoring of patients suffering from early symptoms of dementia. London, U.K.: International workshop on wearable and implantable body sensor networks.

    Google Scholar 

  • Reissman, T., & Garcia, E. (2008). Surgically implanted energy harvesting devices for renewable power sources in insect cyborgs. In The international mechanical engineering congress and exposition (pp. 645–653). Boston, MA: The American Society of Mechanical Engineers (ASME).

    Google Scholar 

  • Ren, H., & Meng, M. Q.-H. (2006). Bioeffects control in wireless biomedical sensor networks. In The 3rd annual IEEE communications society on Sensor and Ad Hoc Communications and Networks (SECON) (pp. 896–904). Reston, VA: IEEE.

    Google Scholar 

  • Rinner, B., & Wolf, W. (2008, October). An introduction to distributed smart cameras. Proceedings of the IEEE (IEEE), 96(10), 1565–1575.

    Article  Google Scholar 

  • Rowe, A., Goel, D., & Rajkumar, R. (2007a). FireFly Mosaic: A vision-enabled wireless sensor networking system. In 28th IEEE international Real-Time Systems Symposium (RTSS) (pp. 459–468). Tucson, AZ: IEEE.

    Google Scholar 

  • Rowe, A. G., Goode, A., Goel, D., & Nourbakhsh, I. (2007b). CMUcam3: An open programmable embedded vision sensor. Pittsburgh, PA: Technical, Robotics Institute, Carnegie Mellon University.

    Google Scholar 

  • Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. Baltimore, MD: Johns Hopkins University.

    Google Scholar 

  • Sacks, L., et al. (2003). The development of a robust, autonomous sensor network platform for environmental monitoring. In IOP sensors and their applications XII. IOP Institute of Physics: Limerick, Ireland.

    Google Scholar 

  • Sadler, B. M., Pham, T., & Sadler, L. C. (1998, August). Optimal and wavelet-based shock wave detection and estimation. The Journal of the Acoustical Society of America (Acoustical Society of America), 104, 955–963.

    Article  Google Scholar 

  • Sahin, E., & Winfield, A. (2008). Special issue on swarm robotics. Swarm Intelligence (Springer Science), 2, 69–72.

    Article  Google Scholar 

  • Sallai, J., Balogh, G., Maróti, M., & Lédeczi, Á. (2004). Acoustic ranging in resource constrained sensor networks. Nashville, TE: Technical, Institute for Software Integrated Systems, Vanderbilt University.

    Google Scholar 

  • Samsung Electronics. (2004). SDRAM 256Mb E-die (x4, x8, x16). Samsung Electronics. May 1, 2004. http://pdf1.alldatasheet.com/datasheet-pdf/view/37074/SAMSUNG/K4S561632E.html. Accessed 5 Apr 2014.

  • Samsung Electronics. (2006). K9F1G08R0B – Flash memory. Samsung Electronics. December 28, 2006. http://www.ic-on-line.cn/view_download.php?id=1664076&file=0333\k9f1g08r0b_2077601.pdf. Accessed 5 Apr 2014.

  • Sarangapani, J. (2007). Wireless ad hoc and sensor networks: Protocols, performance, and control. Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  • Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., & Sastry, S. S. (2007, January). Foundations of control and estimation over lossy networks. Proceedings of the IEEE (IEEE), 95(1), 163–187.

    Article  Google Scholar 

  • ScienceDirect. (2020). Channel state information. Elsevier B.V. ScienceDirect. January 1, 2020. https://www.sciencedirect.com/topics/engineering/channel-state-information. Accessed 21 June 2020.

  • Seema, A., & Reisslein, M. (2011, September). Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a flexi-WVSNP design. IEEE Communications Surveys & Tutorials (IEEE), 13(3), 462–486.

    Article  Google Scholar 

  • Semtech. (2008). XE1205. Semtech. December 10, 2008. http://www.semtech.com/images/datasheet/xe1205.pdf. Accessed 2 Feb 2014.

  • Seo, J., Heo, J., Lim, S., Ahn, J., & Kim, W. (2007). A study on the implementation of a portable u-healthcare system using SNMP and AODV. In 29th annual international conference of the IEEE on Engineering in Medicine and Biology Society (EMBS). Lyon, France: IEEE.

    Google Scholar 

  • Shangguan, L., & Jamieson, K. (2016). The design and implementation of a mobile RFID tag sorting robot. In The 14th annual international conference on mobile systems, applications, and services (MobiSys) (pp. 31–42). Singapore: ACM.

    Chapter  Google Scholar 

  • Shin, K. G., & Ramanathan, P. (January 1994). Real-time computing: A new discipline of computer science and engineering. Proceedings of the IEEE (IEEE), 82(1), 6–24.

    Article  Google Scholar 

  • Shnayder, V., Chen, B.-R., Lorincz, K., Fulford-Jones, T. R. F., & Welsh, M. (2005). Sensor networks for medical care. Technical report TR-08-05. Cambridge, MA: Division of Engineering and Applied Sciences, Harvard University.

    Google Scholar 

  • Shum, A. J., Crest, J., Schubiger, G., & Parviz, B. A. (2007). Drosophila as a live substrate for solid-state microfabrication. Advanced Materials (John Wiley & Sons, Inc.), 19, 3608–3612.

    Google Scholar 

  • Sikka, P., Corke, P., Valencia, P., Crossman, C., Swain, D., & Bishop-Hurley, G. (2006). Wireless adhoc sensor and actuator betworks on the farm. In The 5th international conference on Information Processing in Sensor Networks (IPSN) (pp. 492–499). Nashville, TN: ACM/IEEE.

    Google Scholar 

  • Silicon Laboratories. (2004). C8051F121: 100 MIPS, 128 kB flash, 12-bit ADC, 64-pin mixed-signal MCU. Silicon Laboratories. June 15, 2004. https://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F121-Short.pdf. Accessed 28 Feb 2014.

  • Silicon Laboratories. (2013). CP2102/9: Single-chip USB to UART data. Silicon Laboratories. December 1, 2013. http://www.silabs.com/Support%20Documents/TechnicalDocs/CP2102-9.pdf. Accessed 3 Apr 2014.

  • Simon, D., & Cifuentes, C. (2005). The Squawk virtual machine: Java™ on the bare metal. In OOPSLA’05 companion to the 20th annual ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications (pp. 150–151). San Diego, CA: ACM.

    Google Scholar 

  • Simon, G., et al. (2004). Sensor network-based countersniper system. In The 2nd international conference on embedded networked sensor systems (SenSys) (pp. 1–12). Baltimore, MD: ACM.

    Google Scholar 

  • Skyworks. (2020). SKY13314-374LF: 0.1-6.0 GHz GaAs SPDT switch. Skyworks. January 1, 2020. https://www.skyworksinc.com/en/Products/switches/SKY13314-374LF. Accessed 21 June 2020.

  • Song, E. Y., & Lee, K. B. (2008, August). STWS: A unified web service for IEEE 1451 smart transducers. IEEE Transactions on Instrumentation and Measurement (IEEE), 57(8), 1749–1756.

    Article  Google Scholar 

  • Song, J., et al. (2008). WirelessHART: Applying wireless technology in real-time industrial process control. In Real-Time and Embedded Technology and Applications Symposium (RTAS) (pp. 377–386). St. Louis, MO: IEEE.

    Google Scholar 

  • Statoil. (2014). About Statoil. Statoil. January 1, 2014. http://www.statoil.com/en/Pages/default.aspx. Accessed 5 Mar 2014.

  • Steele, R., Lo, A., Secombe, C., & Wong, Y. K. (2009, December). Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. International Journal of Medical Informatics-Mining of Clinical and Biomedical Text and Data (Special Issue) (Elsevier), 78(12), 788–801.

    Google Scholar 

  • Stoughton, R. (1997, August). Measurements of small-caliber ballistic shock waves in air. The Journal of the Acoustical Society of America (Acoustical Society of America), 102, 781–787.

    Article  Google Scholar 

  • Sung, J., et al. (2008). Wireless sensor networks for cultural property protection. In 22nd international conference on Advanced Information Networking and Applications – workshops (AINAW) (pp. 615–620). Okinawa, Japan: IEEE.

    Google Scholar 

  • Surie, D., & Pederson, T. (2007). An activity-centered wearable computing infrastructure for intelligent environment applications. In T.-W. Kuo, E. Sha, M. Guo, L. T. Yang, & Z. Shao (Eds.), Lecture notes in computer science-embedded and ubiquitous computing (Vol. 4808, pp. 456–465). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Surie, D., Laguionie, O., & Pederson, T. (2008). Wireless sensor networking of everyday objects in a smart home environment. In International conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (pp. 189–194). Sydney, Australia: IEEE.

    Google Scholar 

  • Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., & Culler, D. (2004a). An analysis of a large scale habitat monitoring application. In The 2nd international conference on embedded networked sensor systems (SenSys) (pp. 214–226). Baltimore, MD: ACM.

    Chapter  Google Scholar 

  • Szewczyk, R., Polastre, J., Mainwaring, A., & Culler, D. (2004b). Lessons from a sensor network expedition. In First European workshop on Wireless Sensor Networks and Applications (EWSN) (pp. 307–322). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Tabar, A. M., Keshavarz, A., & Aghajan, H. (2006). Smart home care network using sensor fusion and distributed vision-based reasoning. In The 4th ACM international workshop on Video Surveillance and Sensor Networks (VSSN) (pp. 145–154). Santa Barbara, CA: ACM.

    Chapter  Google Scholar 

  • Tang, V. W. S., Zheng, Y., & Cao, J. (2006). An intelligent car park management system based on wireless sensor networks. In 1st international symposium on pervasive computing and applications (pp. 65–70). Urumqi, China: IEEE.

    Google Scholar 

  • Tavli, B., Bicakci, K., Zilan, R., & Barcelo-Ordinas, J.-M. (2012, October). A survey of visual sensor network platforms. Multimedia Tools and Applications (Springer US), 60(3), 689–726.

    Article  Google Scholar 

  • TechTarget. (2014a). MultiMediaCard (MMC). TechTarget. January 1, 2014. http://whatis.techtarget.com/definition/MultiMediaCard-MMC. Accessed 31 Mar 2014.

  • TechTarget. (2014b). Secure Digital card (SD card). TechTarget. January 1, 2014. http://searchstorage.techtarget.com/definition/Secure-Digital-card. Accessed 31 Mar 2014.

  • TechTarget. (2017). Kinect. TechTarget. January 1, 2017. http://searchhealthit.techtarget.com/definition/Kinect. Accessed 28 Jan 2017.

  • Teixeira, T., & Savvides, A. (2007). Lightweight people counting and localizing in indoor spaces using camera sensor nodes. In First ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) (pp. 36–43). Vienna, Austria: ACM/IEEE.

    Google Scholar 

  • Teixeira, T., Andreou, A. G., & Culurciello, E. (2005). Event-based imaging with active illumination in sensor networks. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 644–647). Kobe, Japan: IEEE.

    Google Scholar 

  • Teixeira, T., Culurciello, E., Park, J. H., Lymberopoulos, D., Barton-Sweeney, A., & Savvides, A. (2006). Address-event imagers for sensor networks: Evaluation and modeling. In The 5th international conference on Information Processing in Sensor Networks (IPSN) (pp. 458–466). Nashville, TN: ACM/IEEE.

    Google Scholar 

  • TeraRanger. (2017). Time-of-flight principle. TeraRanger. January 1, 2017. http://www.teraranger.com/technology/time-of-flight-principle/. Accessed 28 Jan 2017.

  • Texas Instruments. (2005a). CC1100: Low-cost low-power sub-1 GHz RF transceiver. Texas Instruments. January 1, 2005. http://datasheet.octopart.com/CC1100RTKR-Texas-Instruments-datasheet-10422951.pdf. Accessed 3 Feb 2014.

  • Texas Instruments. (2005b). CC2420: First single-chip 2.4 GHZ IEEE 802.15.4 compliant and Zigbeetm ready RF transceiver. January 1, 2005. http://www.ti.com/lit/ds/symlink/cc2420.pdf. Accessed 3 Jan 2014.

  • Texas Instruments. (2005c). CC2431: System-on-chip for 2.4 GHz ZigBee®/IEEE 802.15.4 with location engine. Texas Instruments. January 1, 2005. http://www.ti.com/lit/ds/symlink/cc2431.pdf. Accessed 3 Jan 2014.

  • Texas Instruments. (2006). CC2430: A true system-on-chip solution for 2.4 GHz IEEE 802.15.4/ZigBee. Texas Instruments. January 1, 2006. http://www.ti.com.cn/cn/lit/ds/symlink/cc2430.pdf. Accessed 6 Apr 2014.

  • Texas Instruments. (2007a). CC1000: Single chip very low power RF transceiver. Texas Instruments. 2007. http://www.ti.com/lit/ds/symlink/cc1000.pdf. Accessed 23 Dec 2013.

  • Texas Instruments. (2007b). LMX9820A bluetooth serial port module. Texas Instruments. February 1, 2007. http://www.ti.com/lit/ds/snosaf5j/snosaf5j.pdf. Accessed 31 Mar 2014.

  • Texas Instruments. (2011a). CC2530F32, CC2530F64, CC2530F128, CC2530F256: A true system-on-chip solution for 2.4-GHz IEEE802.15.4 and ZigBee applications. Texas Instruments Inc. February 1, 2011. http://www.ti.com/lit/ds/symlink/cc2530.pdf. Accessed 30 Jan 2017.

  • Texas Instruments. (2011b). MSP430C11x1, MSP430F11x1A mixed signal microcontroller. Texas Instruments. January 1, 2011. http://www.ti.com/lit/ds/symlink/msp430f1611.pdf. Accessed 1 Feb 2014.

  • Texas Instruments. (2011c). MSP430C11x1, MSP430F11x1A mixed signal microcontroller. Texas Instruments. January 1, 2011. http://www.ti.com/lit/ds/symlink/msp430f1611.pdf. Accessed 1 Feb 2014.

  • Texas Instruments. (2020). HDC2010: ±2% ultra-low-power, digital humidity sensor with temperature sensor in WCSP. Texas Instruments, Inc. January 1, 2020. https://www.ti.com/product/HDC2010. Accessed June 2020.

  • Thackeray, M. M., Wolverton, C., & Isaacs, E. D. (2012, July). Electrical energy storage for transportation – Approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science (The Royal Society of Chemistry), (7), 7854–7863.

    Google Scholar 

  • The Engineering ToolBox. (2014). IP – Ingress protection ratings. The Engineering ToolBox. January 1, 2014. http://www.engineeringtoolbox.com/ip-ingress-protection-d_452.html. Accessed 6 Feb 2014.

  • The Free Dictionary. (2014). Imager. The Free Dictionary. January 1, 2014. http://www.thefreedictionary.com/imager. Accessed 30 Mar 2014.

  • Thomesse, J. P. (2005, June). Fieldbus technology in industrial automation. Proceedings of the IEEE (IEEE), 93(6), 1073–1101.

    Article  Google Scholar 

  • TinyOS. (2012). TinyOS. August 20, 2012. http://www.tinyos.net. Accessed 9 Oct 2013.

  • Tolle, G., et al. (2005). A macroscope in the redwoods. In The 3rd international conference on embedded networked sensor systems (SenSys) (pp. 51–63). San Diego, CA: ACM.

    Chapter  Google Scholar 

  • Toshiba. (2002). TC55VCM208ASTN40,55: 524,288-word by 8-bit full CMOS static RAM. Toshiba. July 4, 2002. http://pdf.datasheetcatalog.com/datasheet2/1/03ace2kfgo489cs3i32xflsi1xcy.pdf. Accessed 14 Apr 2014.

  • Triantafyllidis, A., Koutkias, V., Chouvarda, I., & Maglaveras, N. (2008). An open and reconfigurable wireless sensor network for pervasive health monitoring. In Second international conference on pervasive computing technologies for healthcare (pp. 112–115). Tampere, Finland: IEEE.

    Google Scholar 

  • Tu, Y.-J., Zhou, W., & Piramuthu, S. (2009, January). Identifying RFID-embedded objects in pervasive healthcare applications. Decision Support Systems (Elsevier), 46(2), 586–593.

    Article  Google Scholar 

  • UC Berkeley WEBS Project. (2004). nesC: A programming language for deeply networked systems. UC Berkeley. December 14, 2004. http://nescc.sourceforge.net. Accessed 23 Mar 2014.

  • Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In The 1st international conference on embedded networked sensor systems (SenSys) (pp. 171–180). Los Angeles, CA: ACM.

    Google Scholar 

  • Varshney, U. (2008a, November). A framework for supporting emergency messages in wireless patient monitoring. Decision Support Systems (Elsevier), 45(4), 981–996.

    Article  Google Scholar 

  • Varshney, U. (2008b, May). Improving wireless health monitoring using incentive-based router cooperation. Computer (IEEE), 41(5), 56–62.

    Article  Google Scholar 

  • Vasisht, D., Katabi, S., & Kumar, D. (2016). Decimeter-level localization with a single WiFi access point. In The 13th symposium on Networked Systems Design and Implementation (NSDI) (pp. 165–178). Santa Clara, CA: USENIX.

    Google Scholar 

  • Veracode. (2006). Man in the middle attack. Veracode. January 1, 2006. https://www.veracode.com/security/man-in-the-middle-attack. Accessed 14 Feb 2014.

  • Vick, A., et al. (2002). Aerospace operations in urban environments: Exploring new concepts. RAND Corporation.

    Google Scholar 

  • Volgyesi, P., Balogh, G., Nadas, A., Nash, C. B., & Ledeczi, A. (2007). Shooter localization and weapon classification with soldier-wearable networked sensors. In The 5th international conference on mobile systems, applications and services (MobiSys) (pp. 113–126). San Juan, Puerto Rico: ACM.

    Chapter  Google Scholar 

  • Wallace, A., Von Jouanne, A., Wiedenbrug, E., Matheson, E., & Douglass, J. (2001). A laboratory assessment of in-service and nonintrusive motor efficiency testing methods. Electric Power Components and Systems (Taylor & Francis), 29(6), 517–529.

    Article  Google Scholar 

  • Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., & Light, J. (2002). The personal server: Changing the way we think about ubiquitous computing. In G. Borriello & L. E. Holmquist (Eds.), Lecture notes in computer science – UbiComp 2002: Ubiquitous computing (Vol. 2498, pp. 194–209). Berlin/Heidelberg: Springer.

    Chapter  MATH  Google Scholar 

  • WebMD. (2005a). Epilepsy Health Center. WebMD. January 1, 2005a. http://www.webmd.com/epilepsy/electroencephalogram-eeg-21508. Accessed 12 Feb 2014.

  • WebMD. (2005b). Heart Disease Health Center. WebMD. January 1, 2005. http://www.webmd.com/heart-disease/electrocardiogram-ecg-ekg-directory. Accessed 12 Feb 2014.

  • Weiss, B. A., Schlenoff, C., Shneier, M., & Virts, A. (2006). Technology evaluations and performance metrics for soldier-worn sensors for assist. In Performance Metrics for Intelligent Systems worshop (PerMIS). NIST and DARPA: Gaithersburg, MA.

    Google Scholar 

  • Werner-Allen, G., et al. (2006, March/April). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing (IEEE), 10(2), 18–25.

    Google Scholar 

  • Whitmire, E., Latif, T., & Bozkurt, A. (2013). Kinect-based system for automated control of terrestrial insect biobots. In 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1470–1473). Osaka, Japan: IEEE.

    Google Scholar 

  • Willig, A. (2008, May). Recent and emerging topics in wireless industrial communications: A selection. IEEE Transactions on Industrial Informatics (IEEE), 4(2), 102–124.

    Article  Google Scholar 

  • Wilson, S. P., Verschure, P., Mura, A., & Prescott, T. J. (2015). Biomimetic and biohybrid systems: Living machines. Springer.

    Google Scholar 

  • Wireless Sensors, LLC. (2011). The SensiNet Handbook. Wireless Sensors, LLC. January 1, 2011. http://www.wirelesssensors.com/images/pdfs/SensiNet_Handbook_rev2_2011.pdf. Accessed 5 Mar 2014.

  • Witrant, E., Park, P. G., Johansson, M., Fischione, C., & Johansson, K. H. (2007). Predictive control over wireless multi-hop networks. In IEEE International Conference on Control Applications (CCA) (pp. 1037–1042). Singapore: IEEE.

    Google Scholar 

  • Wolfson Microelectronics. (2011). WM8950: ADC with microphone input and programmable digital filters. Wolfson Microelectronics. November 1, 2011. http://www.wolfsonmicro.com/documents/uploads/data_sheets/en/WM8950_1.pdf. Accessed 3 Apr 2014.

  • Wood, A., et al. (2008, July/August). Context-aware wireless sensor networks for assisted living and residential monitoring. Network (IEEE), 22(4), 26–33.

    Google Scholar 

  • Wootton, R., Craig, J., & Patterson, V. (2006). Introduction to Telemedicine (2nd ed.). London: Royal Society of Medicine Press. Edited by Richard Wootton, John Craig and Victor Patterson.

    Google Scholar 

  • Xiao, Y., Shen, X., Sun, B., & Cai, L. (2006, April). Security and privacy in RFID and applications in telemedicine. IEEE Communications Magazine (IEEE), 44(4), 64–72.

    Article  Google Scholar 

  • Xie, D., Yan, T., Ganesan, D., & Hanson, A. (2008). Design and implementation of a dual-camera wireless sensor network for object retrieval. In The 7th international conference on Information Processing in Sensor Networks (IPSN) (pp. 469–480). St. Louis, MO: ACM/IEEE.

    Google Scholar 

  • Xilinx. (2007). XC2C256 CoolRunner-II CPLD. Xilinx. March 8, 2007. http://www.xilinx.com/support/documentation/data_sheets/ds094.pdf. Accessed 23 Mar 2014.

  • Xilinx. (2008). Spartan-II FPGA family data sheet. Xilinx. June 13, 2008. http://www.xilinx.com/support/documentation/data_sheets/ds001.pdf. Accessed 1 Mar 2014.

  • Xilinx. (2013). Spartan-3 FPGA family data sheet. Xilinx. June 27, 2013. http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf. Accessed 19 Dec 2013.

  • Xilinx. (2014). CPLD. Xilinx. January 1, 2014. http://www.xilinx.com/cpld/. Accessed 22 Jan 2014.

  • Xiong, H., Latif, T., Lobaton, E., Bozkurt, A., & Sichitiu, M. L. (2016). Characterization of RSS variability for biobot localization using 802.15.4 radios. In IEEE topical conference on Wireless Sensors and Sensor Networks (WiSNet) (pp. 1–3). Austin, TX: IEEE.

    Google Scholar 

  • Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In The 7th annual international conference on Mobile Computing and Networking (MobiCom) (pp. 70–84). Rome, Italy: ACM.

    Google Scholar 

  • Ye, W., Heidemann, J., & Estrin, D. (2004, June). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking (IEEE/ACM), 12(3), 493–506.

    Article  Google Scholar 

  • Yoo, S. E., Kim, J. E., Kim, T., Ahn, S., Sung, J., & Kim, D. (2007). A2S: Automated Agriculture System based on WSN. In IEEE International Symposium on Consumer Electronics (ISCE) (pp. 1–5). Irving, TX: IEEE.

    Google Scholar 

  • Yoo, J., Yan, L., Lee, S., Kim, Y., & Yoo, H.-J. (2010, January). A 5.2 mW self-configured wearable body sensor network controller and a 12 W wirelessly powered sensor for a continuous health monitoring system. IEEE Journal of Solid-State Circuits (IEEE), 45(1), 178–188.

    Article  Google Scholar 

  • Younis, O., & Fahmy, S. (2004, October/December). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing (IEEE), 3(4).

    Google Scholar 

  • Zhang, M., & Cai, W. (2010). Vision mesh: A novel video sensor networks platform for water conservancy engineering. In 3rd IEEE International Conference Computer Science and Information Technology (ICCSIT) (pp. 106–109). Chengdu, China: IEEE.

    Google Scholar 

  • Zhang, W., Branicky, M. S., & Phillips, S. M. (2001, February). Stability of networked control systems. Control Systems (IEEE), 21(1), 84–99.

    Article  Google Scholar 

  • ZigBee Alliance. (2013). Specifications. ZigBee Alliance. January 1, 2013. http://zigbee.org/Specifications.aspx. Accessed 28 Aug 2013.

  • Zigbee Alliance. (2017). ZigBee RF4CE. Zigbee Alliance. January 1, 2017. http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeerf4ce/. Accessed 30 Jan 2017.

  • Zorzi, M., & Rao, R. R. (2003). Energy and latency performance of geographic random forwarding for ad hoc and sensor networks. In IEEE Wireless Communications and Networking (WCNC) (pp. 1930–1935). New Orleans, LA: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fahmy, H.M.A. (2021). WSN Applications. In: Concepts, Applications, Experimentation and Analysis of Wireless Sensor Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-58015-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58015-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58014-8

  • Online ISBN: 978-3-030-58015-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics