Nothing Special   »   [go: up one dir, main page]

Skip to main content

Black-Box Constructions of Bounded-Concurrent Secure Computation

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12238))

Included in the following conference series:

Abstract

We construct a general purpose secure multiparty computation protocol which remains secure under (a-priori) bounded-concurrent composition and makes only black-box use of cryptographic primitives. Prior to our work, constructions of such protocols required non-black-box usage of cryptographic primitives; alternatively, black-box constructions could only be achieved for super-polynomial simulation based notions of security which offer incomparable security guarantees.

Our protocol has a constant number of rounds and relies on standard polynomial-hardness assumptions, namely, the existence of semi-honest oblivious transfers and collision-resistant hash functions. Previously, such protocols were not known even under sub-exponential assumptions.

S. Garg—Supported in part from DARPA SIEVE Award, AFOSR Award FA9550-15-1-0274, AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award, a Sloan Research Fellowship and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official policy or position of the funding agencies.

X. Liang and O. Pandey—Supported in part by DARPA SIEVE Award HR00112020026, NSF grant 1907908, and a Cisco Research Award. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government, DARPA, NSF, or Cisco.

I. Visconti—This research has been supported in part by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 780477 (project PRIViLEDGE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It means the extraction strategy does not involve rewinding techniques.

  2. 2.

    In some works, when the construction is black-box but the proof of security uses non-black-box techniques (as in this paper), this is referred to as a semi-black-box protocol.

  3. 3.

    In their original construction, C sends a trapdoor permutation (TDP) f and then proves in zero-knowledge that f is indeed a valid TDP. To make this step black-box, C can send an enhanced TDP instead (without the need of \(\mathcal {ZK}\) proof).

  4. 4.

    In [31], this commitment is actually required to be statistically-hiding. But it can be replaced with a statistically-binding scheme if certain modifications are made to the proof phase. See [24] for more details.

  5. 5.

    Note \(I_x(y) = 1\) if and only if \(y=x\) is well defined and the “code” of \(I_x\) requires only the knowledge of x.

  6. 6.

    Note that we cannot ask the committer to prove in zero-knowledge that he uses the committed shares as sender’s input in the OT execution, because such proof will make non-black-box use of both the commitment and OT.

  7. 7.

    A related but very different notion of robustness appears explicitly in the context of non-malleability in [30, 42].

  8. 8.

    We remark that this step can actually happen in parallel with the \(\mathsf {OT}\) instances in Step 3. It is put here (only) to ease the presentation of the security proof. In [24], we talk about how the proof can be modified to accommodate the case where the Step-4 \(\mathsf {OT}\) happens in parallel with Step 3.

  9. 9.

    Note that the security of Step-5 coin tossing ensures that \(R^*\) can learn both (decommitments to) \(s_{n,0}\) and \(s_{n,1}\) with only negligible probability.

  10. 10.

    The protocol of Ishai et al. [36] itself does not satisfy the above property, but as shown in [22], it can be easily modified to satisfy it.

References

  1. Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separating two-round secure computation from oblivious transfer. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  2. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_25

    Chapter  Google Scholar 

  3. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp. 106–115. IEEE Computer Society Press (2001). https://doi.org/10.1109/SFCS.2001.959885

  4. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: 43rd FOCS, pp. 345–355. IEEE Computer Society Press (2002). https://doi.org/10.1109/SFCS.2002.1181957

  5. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In: 34th ACM STOC, pp. 484–493. ACM Press (2002). https://doi.org/10.1145/509907.509979

  6. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: 46th FOCS, pp. 543–552. IEEE Computer Society Press (2005). https://doi.org/10.1109/SFCS.2005.43

  7. Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique. In: 53rd FOCS, pp. 223–232. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.40

  8. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 241–250. ACM Press (2013). https://doi.org/10.1145/2488608.2488639

  9. Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently composable security with shielded super-polynomial simulators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 351–381. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_13

    Chapter  Google Scholar 

  10. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001). https://doi.org/10.1109/SFCS.2001.959888

  11. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_5

    Chapter  Google Scholar 

  12. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Computer Society Press (2010). https://doi.org/10.1109/FOCS.2010.86

  13. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_23

    Chapter  MATH  Google Scholar 

  14. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A black-box construction of non-malleable encryption from semantically secure encryption. J. Cryptol. 31(1), 172–201 (2017)

    Article  MathSciNet  Google Scholar 

  15. Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 231–240. ACM Press (2013). https://doi.org/10.1145/2488608.2488638

  16. Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_31

    Chapter  Google Scholar 

  17. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_17

    Chapter  Google Scholar 

  18. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC, pp. 409–418. ACM Press (1998). https://doi.org/10.1145/276698.276853

  19. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: 22nd ACM STOC, pp. 416–426. ACM Press (1990). https://doi.org/10.1145/100216.100272

  20. Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: 41st FOCS, pp. 314–324. IEEE Computer Society Press (2000). https://doi.org/10.1109/SFCS.2000.892120

  21. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_8

    Chapter  Google Scholar 

  22. Garg, S., Kiyoshima, S., Pandey, O.: A new approach to black-box concurrent secure computation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 566–599. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_19

    Chapter  Google Scholar 

  23. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_25

    Chapter  Google Scholar 

  24. Garg, S., Liang, X., Pandey, O., Visconti, I.: Black-box constructions of bounded-concurrent secure computation. Cryptology ePrint Archive, Report 2020/216 (2020). https://eprint.iacr.org/2020/216

  25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.28420

  26. Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press (2011). https://doi.org/10.1145/1993636.1993729

  27. Goyal, V.: Positive results for concurrently secure computation in the plain model. In: 53rd FOCS, pp. 41–50. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.13

  28. Goyal, V., Jain, A.: On concurrently secure computation in the multiple ideal query model. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 684–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_40

    Chapter  Google Scholar 

  29. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.47

  30. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 260–289. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_12

    Chapter  Google Scholar 

  31. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 515–524. ACM Press (2014). https://doi.org/10.1145/2591796.2591879

  32. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_23

    Chapter  Google Scholar 

  33. Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)

    Article  MathSciNet  Google Scholar 

  34. Hazay, C., Venkitasubramaniam, M.: Composable adaptive secure protocols without setup under polytime assumptions. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 400–432. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_16

    Chapter  MATH  Google Scholar 

  35. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM Press (2006). https://doi.org/10.1145/1132516.1132531

  36. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  37. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21

    Chapter  Google Scholar 

  38. Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_20

    Chapter  Google Scholar 

  39. Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_15

    Chapter  MATH  Google Scholar 

  40. Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 189–198. ACM Press (2009). https://doi.org/10.1145/1536414.1536442

  41. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_27

    Chapter  Google Scholar 

  42. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 179–188. ACM Press (2009). https://doi.org/10.1145/1536414.1536441

  43. Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press (2003). https://doi.org/10.1145/780542.780641

  44. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_12

    Chapter  Google Scholar 

  45. Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_18

    Chapter  Google Scholar 

  46. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th FOCS, pp. 367–378. IEEE Computer Society Press (2006). https://doi.org/10.1109/FOCS.2006.43

  47. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_17

    Chapter  Google Scholar 

  48. Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_15

    Chapter  Google Scholar 

  49. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10

    Chapter  Google Scholar 

  50. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM Press (2004). https://doi.org/10.1145/1007352.1007393

  51. Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_42

    Chapter  Google Scholar 

  52. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a constant number of rounds. In: 44th FOCS, pp. 404–415. IEEE Computer Society Press (2003). https://doi.org/10.1109/SFCS.2003.1238214

  53. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_24

    Chapter  MATH  Google Scholar 

  54. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)

    Article  MathSciNet  Google Scholar 

  55. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC, pp. 242–251. ACM Press (2004). https://doi.org/10.1145/1007352.1007394

  56. Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_26

    Chapter  Google Scholar 

  57. Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press (2010). https://doi.org/10.1109/FOCS.2010.87

  58. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986). https://doi.org/10.1109/SFCS.1986.25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, S., Liang, X., Pandey, O., Visconti, I. (2020). Black-Box Constructions of Bounded-Concurrent Secure Computation. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics