Abstract
We construct a general purpose secure multiparty computation protocol which remains secure under (a-priori) bounded-concurrent composition and makes only black-box use of cryptographic primitives. Prior to our work, constructions of such protocols required non-black-box usage of cryptographic primitives; alternatively, black-box constructions could only be achieved for super-polynomial simulation based notions of security which offer incomparable security guarantees.
Our protocol has a constant number of rounds and relies on standard polynomial-hardness assumptions, namely, the existence of semi-honest oblivious transfers and collision-resistant hash functions. Previously, such protocols were not known even under sub-exponential assumptions.
S. Garg—Supported in part from DARPA SIEVE Award, AFOSR Award FA9550-15-1-0274, AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award, a Sloan Research Fellowship and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official policy or position of the funding agencies.
X. Liang and O. Pandey—Supported in part by DARPA SIEVE Award HR00112020026, NSF grant 1907908, and a Cisco Research Award. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government, DARPA, NSF, or Cisco.
I. Visconti—This research has been supported in part by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 780477 (project PRIViLEDGE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It means the extraction strategy does not involve rewinding techniques.
- 2.
In some works, when the construction is black-box but the proof of security uses non-black-box techniques (as in this paper), this is referred to as a semi-black-box protocol.
- 3.
In their original construction, C sends a trapdoor permutation (TDP) f and then proves in zero-knowledge that f is indeed a valid TDP. To make this step black-box, C can send an enhanced TDP instead (without the need of \(\mathcal {ZK}\) proof).
- 4.
- 5.
Note \(I_x(y) = 1\) if and only if \(y=x\) is well defined and the “code” of \(I_x\) requires only the knowledge of x.
- 6.
Note that we cannot ask the committer to prove in zero-knowledge that he uses the committed shares as sender’s input in the OT execution, because such proof will make non-black-box use of both the commitment and OT.
- 7.
- 8.
We remark that this step can actually happen in parallel with the \(\mathsf {OT}\) instances in Step 3. It is put here (only) to ease the presentation of the security proof. In [24], we talk about how the proof can be modified to accommodate the case where the Step-4 \(\mathsf {OT}\) happens in parallel with Step 3.
- 9.
Note that the security of Step-5 coin tossing ensures that \(R^*\) can learn both (decommitments to) \(s_{n,0}\) and \(s_{n,1}\) with only negligible probability.
- 10.
References
Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separating two-round secure computation from oblivious transfer. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_25
Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp. 106–115. IEEE Computer Society Press (2001). https://doi.org/10.1109/SFCS.2001.959885
Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: 43rd FOCS, pp. 345–355. IEEE Computer Society Press (2002). https://doi.org/10.1109/SFCS.2002.1181957
Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In: 34th ACM STOC, pp. 484–493. ACM Press (2002). https://doi.org/10.1145/509907.509979
Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: 46th FOCS, pp. 543–552. IEEE Computer Society Press (2005). https://doi.org/10.1109/SFCS.2005.43
Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique. In: 53rd FOCS, pp. 223–232. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.40
Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 241–250. ACM Press (2013). https://doi.org/10.1145/2488608.2488639
Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently composable security with shielded super-polynomial simulators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 351–381. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_13
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001). https://doi.org/10.1109/SFCS.2001.959888
Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_5
Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Computer Society Press (2010). https://doi.org/10.1109/FOCS.2010.86
Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_23
Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: A black-box construction of non-malleable encryption from semantically secure encryption. J. Cryptol. 31(1), 172–201 (2017)
Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 231–240. ACM Press (2013). https://doi.org/10.1145/2488608.2488638
Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_31
Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_17
Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC, pp. 409–418. ACM Press (1998). https://doi.org/10.1145/276698.276853
Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: 22nd ACM STOC, pp. 416–426. ACM Press (1990). https://doi.org/10.1145/100216.100272
Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: 41st FOCS, pp. 314–324. IEEE Computer Society Press (2000). https://doi.org/10.1109/SFCS.2000.892120
Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_8
Garg, S., Kiyoshima, S., Pandey, O.: A new approach to black-box concurrent secure computation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 566–599. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_19
Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_25
Garg, S., Liang, X., Pandey, O., Visconti, I.: Black-box constructions of bounded-concurrent secure computation. Cryptology ePrint Archive, Report 2020/216 (2020). https://eprint.iacr.org/2020/216
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.28420
Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press (2011). https://doi.org/10.1145/1993636.1993729
Goyal, V.: Positive results for concurrently secure computation in the plain model. In: 53rd FOCS, pp. 41–50. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.13
Goyal, V., Jain, A.: On concurrently secure computation in the multiple ideal query model. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 684–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_40
Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press (2012). https://doi.org/10.1109/FOCS.2012.47
Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 260–289. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_12
Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 515–524. ACM Press (2014). https://doi.org/10.1145/2591796.2591879
Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_23
Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)
Hazay, C., Venkitasubramaniam, M.: Composable adaptive secure protocols without setup under polytime assumptions. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 400–432. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_16
Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM Press (2006). https://doi.org/10.1145/1132516.1132531
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32
Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21
Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_20
Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_15
Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 189–198. ACM Press (2009). https://doi.org/10.1145/1536414.1536442
Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_27
Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 179–188. ACM Press (2009). https://doi.org/10.1145/1536414.1536441
Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press (2003). https://doi.org/10.1145/780542.780641
Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_12
Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_18
Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th FOCS, pp. 367–378. IEEE Computer Society Press (2006). https://doi.org/10.1109/FOCS.2006.43
Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_17
Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_15
Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10
Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM Press (2004). https://doi.org/10.1145/1007352.1007393
Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_42
Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a constant number of rounds. In: 44th FOCS, pp. 404–415. IEEE Computer Society Press (2003). https://doi.org/10.1109/SFCS.2003.1238214
Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_24
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)
Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC, pp. 242–251. ACM Press (2004). https://doi.org/10.1145/1007352.1007394
Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_26
Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press (2010). https://doi.org/10.1109/FOCS.2010.87
Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986). https://doi.org/10.1109/SFCS.1986.25
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Garg, S., Liang, X., Pandey, O., Visconti, I. (2020). Black-Box Constructions of Bounded-Concurrent Secure Computation. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-57990-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57989-0
Online ISBN: 978-3-030-57990-6
eBook Packages: Computer ScienceComputer Science (R0)