Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vocabulary-Based Method for Quantifying Controversy in Social Media

  • Conference paper
  • First Online:
Ontologies and Concepts in Mind and Machine (ICCS 2020)

Abstract

Identifying controversial topics is not only interesting from a social point of view, it also enables the application of methods to avoid the information segregation, creating better discussion contexts and reaching agreements in the best cases. In this paper we develop a systematic method for controversy detection based primarily on the jargon used by the communities in social media. Our method dispenses with the use of domain-specific knowledge, is language-agnostic, efficient and easy to apply. We perform an extensive set of experiments across many languages, regions and contexts, taking controversial and non-controversial topics. We find that our vocabulary-based measure performs better than state of the art measures that are based only on the community graph structure. Moreover, we shows that it is possible to detect polarization through text analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.reddit.com/.

  2. 2.

    In physics, the electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system’s overall polarity.

  3. 3.

    Q(G)=\(\sum _{C \in G}(e_{c}-a_{c})\), where G is the graph, C each of its communities, \(e_{c}\) the fraction of internal edges and \(a_{c}\) the fraction of edges in the border.

  4. 4.

    https://emojipedia.org/twitter/.

  5. 5.

    https://cran.r-project.org/web/packages/textclean/textclean.pdf.

  6. 6.

    Code and networks used in this work are available here: http://github.com/jmanuoz/Vocabulary-based-Method-for-Quantify-Controversy.

  7. 7.

    https://github.com/gvrkiran/controversy-detection.

  8. 8.

    This is a measure based on random walks over the graph structure.

  9. 9.

    Where k is the number of classes and h the dimension of the text representation.

  10. 10.

    We compare polynomial models of degree 1 to 5 and logmodel, linear model has the lowest RMSE error training with 10-fold cross-validation.

References

  1. Akoglu, L.: Quantifying political polarity based on bipartite opinion networks. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)

    Google Scholar 

  2. Allport, G.W., Clark, K., Pettigrew, T.: The nature of prejudice (1954)

    Google Scholar 

  3. Amelkin, V., Bogdanov, P., Singh, A.K.: A distance measure for the analysis of polar opinion dynamics in social networks. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 159–162. IEEE (2017)

    Google Scholar 

  4. Bessi, A., Caldarelli, G., Del Vicario, M., Scala, A., Quattrociocchi, W.: Social determinants of content selection in the age of (Mis)Information. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 259–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13734-6_18

    Chapter  Google Scholar 

  5. Bild, D.R., Liu, Y., Dick, R.P., Mao, Z.M., Wallach, D.S.: Aggregate characterization of user behavior in twitter and analysis of the retweet graph. ACM Trans. Internet Technol. (TOIT) 15(1), 4 (2015)

    Article  Google Scholar 

  6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  7. Calvo, E.: Anatomía política de twitter en argentina. Tuiteando# Nisman. Buenos Aires: Capital Intelectual (2015)

    Google Scholar 

  8. Chitra, U., Musco, C.: Analyzing the impact of filter bubbles on social network polarization. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 115–123 (2020)

    Google Scholar 

  9. Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on twitter. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)

    Google Scholar 

  10. Dandekar, P., Goel, A., Lee, D.T.: Biased assimilation, homophily, and the dynamics of polarization. Proc. Natl. Acad. Sci. 110(15), 5791–5796 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Darwish, K.: Quantifying polarization on twitter: the kavanaugh nomination. In: International Conference on Social Informatics, pp. 188–201. Springer (2019)

    Google Scholar 

  12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805

  13. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)

  14. Easley, D., Kleinberg, J., et al.: Networks, Crowds and Markets, vol. 8. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  15. Feng, W., Wang, J.: Retweet or not?: personalized tweet re-ranking. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 577–586. ACM (2013)

    Google Scholar 

  16. Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Reducing controversy by connecting opposing views. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM (2017)

    Google Scholar 

  17. Garimella, K., Mathioudakis, M., Morales, G.D.F., Gionis, A.: Exploring controversy in twitter. In: Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, pp. 33–36. ACM (2016)

    Google Scholar 

  18. Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying controversy on social media. ACM Trans. Soc. Comput. 1(1), 3 (2018)

    Article  Google Scholar 

  19. Guerra, P.C., Meira Jr, W., Cardie, C., Kleinberg, R.: A measure of polarization on social media networks based on community boundaries. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)

    Google Scholar 

  20. Hong, S.: Online news on twitter: newspapers’ social media adoption and their online readership. Inf. Econ. Policy 24(1), 69–74 (2012)

    Article  Google Scholar 

  21. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE 9(6), e98679 (2014)

    Article  Google Scholar 

  22. Jang, M.: Probabilistic Models for Identifying and Explaining Controversy (2019)

    Google Scholar 

  23. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  24. Kulshrestha, J., Zafar, M.B., Noboa, L.E., Gummadi, K.P., Ghosh, S.: Characterizing information diets of social media users. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  25. Kumar, S., Hamilton, W.L., Leskovec, J., Jurafsky, D.: Community interaction and conflict on the web. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 933–943. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  26. Kupavskii, A., et al.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2335–2338. ACM (2012)

    Google Scholar 

  27. Lahoti, P., Garimella, K., Gionis, A.: Joint non-negative matrix factorization for learning ideological leaning on twitter. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 351–359. ACM (2018)

    Google Scholar 

  28. Macmillan, N.A., Creelman, C.D.: Detection Theory: A User’s Guide. Psychology press (2004)

    Google Scholar 

  29. Matakos, A., Terzi, E., Tsaparas, P.: Measuring and moderating opinion polarization in social networks. Data Min. Knowl. Discovery 31(5), 1480–1505 (2017). https://doi.org/10.1007/s10618-017-0527-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Morales, A., Borondo, J., Losada, J.C., Benito, R.M.: Measuring political polarization: twitter shows the two sides of venezuela. Chaos Interdiscipl. J. Nonlinear Sci. 25(3), 033114 (2015)

    Article  Google Scholar 

  31. Munson, S.A., Lee, S.Y., Resnick, P.: Encouraging reading of diverse political viewpoints with a browser widget. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)

    Google Scholar 

  32. Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLoS ONE 10(12), e0144296 (2015)

    Article  Google Scholar 

  33. Pettigrew, T.F., Tropp, L.R.: Does intergroup contact reduce prejudice? recent meta-analytic findings. In: Reducing Prejudice and Discrimination, pp. 103–124. Psychology Press (2013)

    Google Scholar 

  34. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  35. Rajadesingan, A., Liu, H.: Identifying users with opposing opinions in twitter debates. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS, vol. 8393, pp. 153–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05579-4_19

    Chapter  Google Scholar 

  36. Ramponi, G., Brambilla, M., Ceri, S., Daniel, F., Di Giovanni, M.: Vocabulary-based community detection and characterization (2019)

    Google Scholar 

  37. Shearer, E., Gottfried, J.: News use across social media platforms 2017. Pew Res. Center 7 (2017)

    Google Scholar 

  38. Stewart, L.G., Arif, A., Starbird, K.: Examining trolls and polarization with a retweet network. In: Proceedings ACM WSDM, Workshop on Misinformation and Misbehavior Mining on the Web (2018)

    Google Scholar 

  39. Tran, T., Ostendorf, M.: Characterizing the language of online communities and its relation to community reception. arXiv preprint arXiv:1609.04779 (2016)

  40. Trilling, D.: Two different debates? investigating the relationship between a political debate on tv and simultaneous comments on twitter. Social science computer review 33(3), 259–276 (2015)

    Article  Google Scholar 

  41. Venturini, T., Jacomy, M., Jensen, P.: What do we see when we look at networks. an introduction to visual network analysis and force-directed layouts. An introduction to visual network analysis and force-directed layouts, 26 April 2019

    Google Scholar 

  42. Weller, K., Bruns, A., Burgess, J., Mahrt, M., Puschmann, C.: Twitter and society, vol. 89. Peter Lang (2014)

    Google Scholar 

  43. Yang, X., Macdonald, C., Ounis, I.: Using word embeddings in twitter election classification. Inf. Retrieval J. 21(2–3), 183–207 (2018)

    Article  Google Scholar 

  44. Yardi, S., Boyd, D.: Dynamic debates: an analysis of group polarization over time on twitter. Bull. Sci. Technol. Soc. 30(5), 316–327 (2010)

    Article  Google Scholar 

  45. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  46. Zhur, X., Ghahramanirh, Z.: Learning from labeled and unlabeled data with label propagation (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Manuel Ortiz de Zarate or Esteban Feuerstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ortiz de Zarate, J.M., Feuerstein, E. (2020). Vocabulary-Based Method for Quantifying Controversy in Social Media. In: Alam, M., Braun, T., Yun, B. (eds) Ontologies and Concepts in Mind and Machine. ICCS 2020. Lecture Notes in Computer Science(), vol 12277. Springer, Cham. https://doi.org/10.1007/978-3-030-57855-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57855-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57854-1

  • Online ISBN: 978-3-030-57855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics