Abstract
Identifying controversial topics is not only interesting from a social point of view, it also enables the application of methods to avoid the information segregation, creating better discussion contexts and reaching agreements in the best cases. In this paper we develop a systematic method for controversy detection based primarily on the jargon used by the communities in social media. Our method dispenses with the use of domain-specific knowledge, is language-agnostic, efficient and easy to apply. We perform an extensive set of experiments across many languages, regions and contexts, taking controversial and non-controversial topics. We find that our vocabulary-based measure performs better than state of the art measures that are based only on the community graph structure. Moreover, we shows that it is possible to detect polarization through text analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In physics, the electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system’s overall polarity.
- 3.
Q(G)=\(\sum _{C \in G}(e_{c}-a_{c})\), where G is the graph, C each of its communities, \(e_{c}\) the fraction of internal edges and \(a_{c}\) the fraction of edges in the border.
- 4.
- 5.
- 6.
Code and networks used in this work are available here: http://github.com/jmanuoz/Vocabulary-based-Method-for-Quantify-Controversy.
- 7.
- 8.
This is a measure based on random walks over the graph structure.
- 9.
Where k is the number of classes and h the dimension of the text representation.
- 10.
We compare polynomial models of degree 1 to 5 and logmodel, linear model has the lowest RMSE error training with 10-fold cross-validation.
References
Akoglu, L.: Quantifying political polarity based on bipartite opinion networks. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)
Allport, G.W., Clark, K., Pettigrew, T.: The nature of prejudice (1954)
Amelkin, V., Bogdanov, P., Singh, A.K.: A distance measure for the analysis of polar opinion dynamics in social networks. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 159–162. IEEE (2017)
Bessi, A., Caldarelli, G., Del Vicario, M., Scala, A., Quattrociocchi, W.: Social determinants of content selection in the age of (Mis)Information. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 259–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13734-6_18
Bild, D.R., Liu, Y., Dick, R.P., Mao, Z.M., Wallach, D.S.: Aggregate characterization of user behavior in twitter and analysis of the retweet graph. ACM Trans. Internet Technol. (TOIT) 15(1), 4 (2015)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)
Calvo, E.: Anatomía política de twitter en argentina. Tuiteando# Nisman. Buenos Aires: Capital Intelectual (2015)
Chitra, U., Musco, C.: Analyzing the impact of filter bubbles on social network polarization. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 115–123 (2020)
Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on twitter. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)
Dandekar, P., Goel, A., Lee, D.T.: Biased assimilation, homophily, and the dynamics of polarization. Proc. Natl. Acad. Sci. 110(15), 5791–5796 (2013)
Darwish, K.: Quantifying polarization on twitter: the kavanaugh nomination. In: International Conference on Social Informatics, pp. 188–201. Springer (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805
Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)
Easley, D., Kleinberg, J., et al.: Networks, Crowds and Markets, vol. 8. Cambridge University Press, Cambridge (2010)
Feng, W., Wang, J.: Retweet or not?: personalized tweet re-ranking. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 577–586. ACM (2013)
Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Reducing controversy by connecting opposing views. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM (2017)
Garimella, K., Mathioudakis, M., Morales, G.D.F., Gionis, A.: Exploring controversy in twitter. In: Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, pp. 33–36. ACM (2016)
Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying controversy on social media. ACM Trans. Soc. Comput. 1(1), 3 (2018)
Guerra, P.C., Meira Jr, W., Cardie, C., Kleinberg, R.: A measure of polarization on social media networks based on community boundaries. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)
Hong, S.: Online news on twitter: newspapers’ social media adoption and their online readership. Inf. Econ. Policy 24(1), 69–74 (2012)
Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE 9(6), e98679 (2014)
Jang, M.: Probabilistic Models for Identifying and Explaining Controversy (2019)
Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
Kulshrestha, J., Zafar, M.B., Noboa, L.E., Gummadi, K.P., Ghosh, S.: Characterizing information diets of social media users. In: Ninth International AAAI Conference on Web and Social Media (2015)
Kumar, S., Hamilton, W.L., Leskovec, J., Jurafsky, D.: Community interaction and conflict on the web. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 933–943. International World Wide Web Conferences Steering Committee (2018)
Kupavskii, A., et al.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2335–2338. ACM (2012)
Lahoti, P., Garimella, K., Gionis, A.: Joint non-negative matrix factorization for learning ideological leaning on twitter. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 351–359. ACM (2018)
Macmillan, N.A., Creelman, C.D.: Detection Theory: A User’s Guide. Psychology press (2004)
Matakos, A., Terzi, E., Tsaparas, P.: Measuring and moderating opinion polarization in social networks. Data Min. Knowl. Discovery 31(5), 1480–1505 (2017). https://doi.org/10.1007/s10618-017-0527-9
Morales, A., Borondo, J., Losada, J.C., Benito, R.M.: Measuring political polarization: twitter shows the two sides of venezuela. Chaos Interdiscipl. J. Nonlinear Sci. 25(3), 033114 (2015)
Munson, S.A., Lee, S.Y., Resnick, P.: Encouraging reading of diverse political viewpoints with a browser widget. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)
Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLoS ONE 10(12), e0144296 (2015)
Pettigrew, T.F., Tropp, L.R.: Does intergroup contact reduce prejudice? recent meta-analytic findings. In: Reducing Prejudice and Discrimination, pp. 103–124. Psychology Press (2013)
Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31
Rajadesingan, A., Liu, H.: Identifying users with opposing opinions in twitter debates. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS, vol. 8393, pp. 153–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05579-4_19
Ramponi, G., Brambilla, M., Ceri, S., Daniel, F., Di Giovanni, M.: Vocabulary-based community detection and characterization (2019)
Shearer, E., Gottfried, J.: News use across social media platforms 2017. Pew Res. Center 7 (2017)
Stewart, L.G., Arif, A., Starbird, K.: Examining trolls and polarization with a retweet network. In: Proceedings ACM WSDM, Workshop on Misinformation and Misbehavior Mining on the Web (2018)
Tran, T., Ostendorf, M.: Characterizing the language of online communities and its relation to community reception. arXiv preprint arXiv:1609.04779 (2016)
Trilling, D.: Two different debates? investigating the relationship between a political debate on tv and simultaneous comments on twitter. Social science computer review 33(3), 259–276 (2015)
Venturini, T., Jacomy, M., Jensen, P.: What do we see when we look at networks. an introduction to visual network analysis and force-directed layouts. An introduction to visual network analysis and force-directed layouts, 26 April 2019
Weller, K., Bruns, A., Burgess, J., Mahrt, M., Puschmann, C.: Twitter and society, vol. 89. Peter Lang (2014)
Yang, X., Macdonald, C., Ounis, I.: Using word embeddings in twitter election classification. Inf. Retrieval J. 21(2–3), 183–207 (2018)
Yardi, S., Boyd, D.: Dynamic debates: an analysis of group polarization over time on twitter. Bull. Sci. Technol. Soc. 30(5), 316–327 (2010)
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)
Zhur, X., Ghahramanirh, Z.: Learning from labeled and unlabeled data with label propagation (2002)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ortiz de Zarate, J.M., Feuerstein, E. (2020). Vocabulary-Based Method for Quantifying Controversy in Social Media. In: Alam, M., Braun, T., Yun, B. (eds) Ontologies and Concepts in Mind and Machine. ICCS 2020. Lecture Notes in Computer Science(), vol 12277. Springer, Cham. https://doi.org/10.1007/978-3-030-57855-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-57855-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57854-1
Online ISBN: 978-3-030-57855-8
eBook Packages: Computer ScienceComputer Science (R0)