Nothing Special   »   [go: up one dir, main page]

Skip to main content

TNet: Phylogeny-Based Inference of Disease Transmission Networks Using Within-Host Strain Diversity

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

The inference of disease transmission networks from genetic sequence data is an important problem in epidemiology. One popular approach for building transmission networks is to reconstruct a phylogenetic tree using sequences from disease strains sampled from (a subset of) infected hosts and infer transmissions based on this tree. However, most existing phylogenetic approaches for transmission network inference cannot take within-host strain diversity into account, which affects their accuracy, and, moreover, are highly computationally intensive and unscalable.

In this work, we introduce a new phylogenetic approach, TNet, for inferring transmission networks that addresses these limitations. TNet uses multiple strain sequences from each sampled host to infer transmissions and is simpler and more accurate than existing approaches. Furthermore, TNet is highly scalable and able to distinguish between ambiguous and unambiguous transmission inferences. We evaluated TNet on a large collection of 560 simulated transmission networks of various sizes and diverse host, sequence, and transmission characteristics, as well as on 10 real transmission datasets with known transmission histories. Our results show that TNet outperforms two other recently developed methods, phyloscanner and SharpTNI, that also consider within-host strain diversity using a similar computational framework. TNet is freely available open-source from https://compbio.engr.uconn.edu/software/TNet/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  Google Scholar 

  2. Clutter, D., et al.: Trends in the molecular epidemiology and genetic mechanisms of transmitted human immunodeficiency virus type 1 drug resistance in a large US clinic population. Clin. Infect. Dis. 68(2), 213–221 (2018). https://doi.org/10.1093/cid/ciy453

    Article  CAS  PubMed Central  Google Scholar 

  3. De Maio, N., Worby, C.J., Wilson, D.J., Stoesser, N.: Bayesian reconstruction of transmission within outbreaks using genomic variants. PLoS Comp. Biol. 14(4), 1–23 (2018). https://doi.org/10.1371/journal.pcbi.1006117

    Article  CAS  Google Scholar 

  4. De Maio, N., Wu, C.H., Wilson, D.J.: Scotti: Efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comp. Biol. 12(9), 1–23 (2016). https://doi.org/10.1371/journal.pcbi.1005130

    Article  CAS  Google Scholar 

  5. Didelot, X., Fraser, C., Gardy, J., Colijn, C., Malik, H.: Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 34(4), 997–1007 (2017). https://doi.org/10.1093/molbev/msw275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Domingo, E., Holland, J.: RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Drake, J.W., Holland, J.J.: Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96(24), 13910–13913 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fitch, W.: Towards defining the course of evolution: minimum change for a specified tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  9. Glebova, O., Knyazev, S., Melnyk, A., Artyomenko, A., Khudyakov, Y., Zelikovsky, A., Skums, P.: Inference of genetic relatedness between viral quasispecies from sequencing data. BMC Genom. 18(suppl. 10), 918 (2017)

    Article  Google Scholar 

  10. Grulich, A., et al.: A10 Using the molecular epidemiology of HIV transmission in New South Wales to inform public health response: Assessing the representativeness of linked phylogenetic data. Virus Evol. 4(suppl. 1), April 2018. https://doi.org/10.1093/ve/vey010.009

  11. Hall, M., Woolhouse, M., Rambaut, A.: Epidemic reconstruction in a phylogenetics framework: transmission trees as partitions of the node set. PLoS Comp. Biol. 11(12), e1004613 (2015). https://doi.org/10.1371/journal.pcbi.1004613

    Article  CAS  Google Scholar 

  12. Kermack, W.O., McKendrick, A.G., Walker, G.T.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soci. Lond. Ser. A 115(772), 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

    Article  Google Scholar 

  13. Klinkenberg, D., Backer, J.A., Didelot, X., Colijn, C., Wallinga, J.: Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks. PLoS Comp. Biol. 13, 1–32 (2017). https://doi.org/10.1371/journal.pcbi.1005495

    Article  CAS  Google Scholar 

  14. Kosakovsky Pond, S.L., Weaver, S., Leigh Brown, A.J., Wertheim, J.O.: HIV-TRACE (TRAnsmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens. Mol. Biol. Evol. 35(7), 1812–1819 (2018). https://doi.org/10.1093/molbev/msy016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moshiri, N., Wertheim, J.O., Ragonnet-Cronin, M., Mirarab, S.: FAVITES: simultaneous simulation of transmission networks, phylogenetic trees and sequences. Bioinformatics 35(11), 1852–1861 (2019). https://doi.org/10.1093/bioinformatics/bty921

    Article  CAS  PubMed  Google Scholar 

  16. Romero-Severson, E.O., Bulla, I., Leitner, T.: Phylogenetically resolving epidemiologic linkage. Proc. Natl. Acad. Sci. 113(10), 2690–2695 (2016). https://doi.org/10.1073/pnas.1522930113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28(1), 35–42 (1975). http://www.jstor.org/stable/2100459

  18. Sashittal, P., El-Kebir, M.: SharpTNI: counting and sampling parsimonious transmission networks under a weak bottleneck. bioRxiv (2019). https://doi.org/10.1101/842237

  19. Skums, P., et al.: QUENTIN: reconstruction of disease transmissions from viral quasi species genomic data. Bioinformatics 34(1), 163–170 (2018). https://doi.org/10.1093/bioinformatics/btx402

    Article  CAS  PubMed  Google Scholar 

  20. Sledzieski, S., Zhang, C., Mandoiu, I., Bansal, M.S.: TreeFix-TP: phylogenetic error-correction for infectious disease transmission network inference. bioRxiv (2019). https://doi.org/10.1101/813931

  21. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014). https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steinhauer, D., Holland, J.: Rapid evolution of RNA viruses. Annu. Rev. Microbiol. 41, 409–433 (1987)

    Article  CAS  PubMed  Google Scholar 

  23. Wymant, C., et al.: PHYLOSCANNER: inferring transmission from within- and between-host pathogen genetic diversity. Mol. Biol. Evol. 35(3), 719–733 (2017). https://doi.org/10.1093/molbev/msx304

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Pavel Skums (Georgia State University) and the Centers for Disease Control for sharing their HCV outbreak data. We also thank Samuel Sledzieski for creating and sharing the simulated transmission network datasets used in this work.

Funding

This work was supported in part by NSF award CCF 1618347 to IM and MSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul S. Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhar, S., Zhang, C., Mandoiu, I., Bansal, M.S. (2020). TNet: Phylogeny-Based Inference of Disease Transmission Networks Using Within-Host Strain Diversity. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics