Abstract
The impact of social media on people’s lives has significantly grown over the last decade. Individuals use it to promote discussions and a way of acquiring data. Industries use social media to market their goods and facilities, advise and inform clients about future offers, and follow up on their direct market. It also offers vital information concerning the general emotions and sentiments directly connected to welfare and security. In this work, an improved model called Improved Sentiment Urgency Emotion Detection (ISUED) has been created based on previous work for opinion and social media mining implemented with Multinomial Naive Bayes algorithm and based on three classifiers which are sentiment analysis, urgency detection, and emotion classification. The model will be trained to improve its accuracy and F1 score so that the precision and percentage of correctly predicted texts is elevated. This model will be applied on the same data set of previous work acquired from a general business Twitter account of one of the largest chains of supermarkets in the United Kingdom to be able to see what sentiments and emotions can be detected and how urgent they are.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, M., Memon, K.A., Jamali, A.A., Memon, S., Ahmed, A.: Multinomial Naive Bayes classification model for sentiment analysis. IJCSNS 19(3), 62 (2019)
Burton, J., Khammash, M.: Why do people read reviews posted on consumer-opinion portals? J. Mark. Manag. 26(3–4), 230–255 (2010)
Chavez, D.L., Mohler, D.S., Shockley, B.A.: U.S. Patent No. 8,515,049. U.S. Patent and Trademark Office, Washington, DC (2013)
Grosseck, G., Holotescu, C.: Can we use Twitter for educational activities. In: 4th International Scientific Conference, eLearning and Software for Education, Bucharest, Romania, April 2008
Isabelle, G., Maharani, W., Asror, I.: Analysis on opinion mining using combining lexicon-based method and multinomial Naïve Bayes. In: 2018 International Conference on Industrial Enterprise and System Engineering, ICoIESE 2018. Atlantis Press, March 2019
Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: tweets as electronic word of mouth. J. Am. Soc. Inform. Sci. Technol. 60(11), 2169–2188 (2009)
Janssens, O., Slembrouck, M., Verstockt, S., Van Hoecke, S., Van de Walle, R.: Real-time emotion classification of tweets. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1430–1431. IEEE, August 2013
Jussila, J.J., Kärkkäinen, H., Aramo-Immonen, H.: Social media utilization in business-to-business relationships of technology industry firms. Comput. Hum. Behav. 30, 606–613 (2014)
Kho, N.D.: Customer experience and sentiment analysis. KM World 19(2), 10–20 (2010)
Kim, Y., Jeong, S.R., Ghani, I.: Text opinion mining to analyze news for stock market prediction. Int. J. Adv. Soft Comput. Appl. 6(1), 2074–8523 (2014)
Lovejoy, K., Waters, R.D., Saxton, G.D.: Engaging stakeholders through Twitter: how nonprofit organizations are getting more out of 140 characters or less. Public Relat. Rev. 38(2), 313–318 (2012)
Monkey Learn (2013). http://www.monkeylearn.com
Soussan, T., Trovati, M.: Sentiment urgency emotion detection for business intelligence. In: Research Perspectives in Data Science and Smart Technology for Shipping Industries (2020)
Su, J., Shirab, J.S., Matwin, S.: Large scale text classification using semi-supervised multinomial Naive Bayes. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 97–104 (2011)
Taneja, S., Toombs, L.: Putting a face on small businesses: visibility, viability, and sustainability the impact of social media on small business marketing. Acad. Mark. Stud. J. 18(1), 249 (2014)
Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing twitter “big data” for automatic emotion identification. In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, pp. 587–592. IEEE, September 2012
Wei, C.P., Chen, Y.M., Yang, C.S., Yang, C.C.: Understanding what concerns consumers: a semantic approach to product feature extraction from consumer reviews. IseB 8(2), 149–167 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Soussan, T., Trovati, M. (2021). Improved Sentiment Urgency Emotion Detection for Business Intelligence. In: Barolli, L., Li, K., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2020. Advances in Intelligent Systems and Computing, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-57796-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-57796-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57795-7
Online ISBN: 978-3-030-57796-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)