Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-Submodular Streaming Maximization with Minimum Memory and Low Adaptive Complexity

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2020)

Abstract

Extracting representative elements from a large stream of data is an important and interesting problem. Such problem can be formulated as maximizing a normalized monotone non-submodular set function subject to a cardinality constraint. In this paper, we first present an algorithm called Non-SubModular-Sieve-Streaming\(^{++}\) for solving this problem by utilizing the concept of diminishing-return ratio, which requires only one pass over the data and obtain tight approximation ratio and minimum memory complexity. Then, for reducing the number of adaptive complexity, we propose an algorithm called Non-SubModular-Batch-Sieve-Streaming\(^{++}\) by buffering a small fraction of the stream and applying a filtering procedure. We analyze the approximation ratios of the two algorithms, which generalize the results of Sieve-Streaming\(^{++}\) and Batch-Sieve-Streaming\(^{++}\) to the non-submodular case. Finally, we illustrate the feasibility and effectiveness of the two algorithms through a numerical example and compare the corresponding results with the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajtai, M., Jayram, T.S., Kumar, R., Sivakumar, D.: Approximate counting of inversions in a data stream. In: Proceedings of STOC, pp. 370–379 (2002)

    Google Scholar 

  2. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of SIGKDD, pp. 671–680 (2014)

    Google Scholar 

  3. Badanidiyuru, A., Vondrk, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of SODA, pp. 1497–1514 (2014)

    Google Scholar 

  4. Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of SODA, pp. 283–302 (2019)

    Google Scholar 

  5. Breuer, A., Balkanski, E., Singer, Y.: The FAST algorithm for submodular maximization. arXiv: 1907.06173 (2019)

  6. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. In: Proceedings of SODA, pp. 1202–1216 (2015)

    Google Scholar 

  7. Buchbinder, N., Feldman, M., Garg, M.: Deterministic \((\frac{1}{2})+\epsilon \)-approximation for submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254 (2019)

    Google Scholar 

  8. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings, matroids, and more. Math. Program. 154, 225–247 (2015). https://doi.org/10.1007/s10107-015-0900-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T., Huang, Z., Jiang, S., Kang, N., Tang, Z.: Online submodular maximization with free disposal: Randomization beats 0.25 for partition matroids. (2016)

  10. Chekuri, C., Gupta, S., Quanrud, K.: Streaming algorithms for submodular function maximization. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 318–330. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_26

    Chapter  Google Scholar 

  11. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of ICML, pp. 1057–1064 (2011)

    Google Scholar 

  12. Du, D., Li, Y., Xiu, N., Xu, D.: Simultaneous approximation of multi-criteria submodular function maximization. J. Oper. Res. Soc. China 2, 271–290 (2014). https://doi.org/10.1007/s40305-014-0053-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Dueck, D., Frey, B.J.: Non-metricaffinity propagation for unsupervised image categorization. In: Proceedings of ICCV, pp. 1–8 (2007)

    Google Scholar 

  14. El-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific literature. In: Proceedings of SIGKDD, pp. 439–447 (2011)

    Google Scholar 

  15. Ene, A., Nguyen, H.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: Proceedings of ICALP, pp. 53:1–53:12 (2019)

    Google Scholar 

  16. El-Arini, K., Veda, G., Shahaf, D., Guestrin, C.: Turning down the noise in the blogosphere. In: Proceedings of SIGKDD, pp. 289–298 (2009)

    Google Scholar 

  17. Elenberg, E., Dimakis, A.G., Feldman, M., Karbasi, A.: Streaming weak submodularity: interpreting neural networks on the fly. In: Proceedings of NIPS, pp. 4044–4054 (2017)

    Google Scholar 

  18. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  19. Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: streaming submodular maximization with subsampling. In: Proceedings of ANIPS, pp. 730–740 (2018)

    Google Scholar 

  20. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43, 514–542 (2014)

    Article  MathSciNet  Google Scholar 

  21. Goldengorin, B., Ghosh, D.: A multilevel search algorithm for the maximization of submodular functions applied to the quadratic cost partition problem. J. Glob. Optim. 32, 65–82 (2005). https://doi.org/10.1007/s10898-004-5909-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Gomes, R., Krause, A.: Budgeted nonparametric learning from data streams. In: Proceedings of ICML, pp. 391–398 (2010)

    Google Scholar 

  23. Guha, S., Mishra, N., Motwani, R., Ocallaghan, L.: Clustering data streams. In: Proceedings of FOCS, pp. 359–366 (2000)

    Google Scholar 

  24. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi A.: Submodular streaming in all its glory: tight approximation, minimum memory and low adaptive complexity. In: Proceedings of ICML, pp. 3311–3320 (2019)

    Google Scholar 

  25. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Practical Approaches to Hard Problems, pp. 71–104. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  26. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)

    MATH  Google Scholar 

  27. Kulik, A., Shachnai, H., Tamir, T.: Approximations for monotone and nonmonotone submodular maximization with knapsack constraints. Math. Oper. Res. 38, 729–739 (2013)

    Article  MathSciNet  Google Scholar 

  28. Lawrence, N., Seeger, M., Herbrich, R.: Fast sparse Gaussian process methods: the informative vector machine. In: Proceedings of NIPS, pp. 625–632 (2003)

    Google Scholar 

  29. Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone sub-modular maximization: personalized video summarization on the fly. arXiv: 1706.03583 (2018)

  30. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1, 117–236 (2005)

    Article  MathSciNet  Google Scholar 

  31. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: Ananalysis of approximations for maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978)

    Article  Google Scholar 

  32. Norouzi-Fard, A., Tarnawski J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svensson, O.: Beyond 1/2-approximation for submodular maximization on massive data streams. In: Proceedings of ICML, pp. 3826–3835 (2018)

    Google Scholar 

  33. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  34. Vondrk, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of STOC, pp. 67–74 (2008)

    Google Scholar 

  35. Wang, Y., Xu, D., Wang, Y., Zhang, D.: Non-submodular maximization on massive data streams. J. Glob. Optim. 76(4), 729–743 (2019). https://doi.org/10.1007/s10898-019-00840-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Zoubin, G.: Scaling the Indian buffet process via submodular maximization. In: Proceedings of ICML, pp. 1013–1021 (2013)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by Natural Science Foundation of China (Nos. 11401438, 11571120). The third author is supported by Natural Science Foundation of Shandong Province (Nos. ZR2017LA002, ZR2019MA022) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Zhou, X., Tan, J., Wang, W. (2020). Non-Submodular Streaming Maximization with Minimum Memory and Low Adaptive Complexity. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57602-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57601-1

  • Online ISBN: 978-3-030-57602-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics