Nothing Special   »   [go: up one dir, main page]

Skip to main content

The 8T-LE Partition Applied to the Barycentric Division of a 3-D Cube

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 1882 Accesses

Abstract

The barycentric partition of a 3D-cube into tetrahedra is carried out by adding a new node to the body at the centroid point and then, new nodes are progressively added to the centroids of faces and edges. This procedure generates three types of tetrahedra in every single step called, Sommerville tetrahedron number 3 (ST3), isosceles trirectangular tetrahedron and regular right-type tetrahedron. We are interested in studying the number of similarity classes generated when the 8T-LE partition is applied to these tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Albertelli, R. A. Crawfis, Efficient subdivision of finite-element datasets into consistent tetrahedra. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization, 213–220, Phonenix, AZ, November 1997

    Google Scholar 

  2. J. Brandts, S. Korotov, On nonobtuse simplicial partitions. SIAM Review. 51 (2), 317–335 (2009)

    Article  MathSciNet  Google Scholar 

  3. H. Carr, T. Möller, J. Snoeyink, Simplicial subdivision and sampling artifacts. Proc. IEEE Visualization, 99–106, 2001

    Google Scholar 

  4. J. Dompierre, P. Labbé, M.-G. Vallet, R. Camarero, How to subdivide pyramids, prysms and hexahedra into tetrahedra. In 8th International Meshing Roundtable, Lake Tahoe, CA, October 1999. Sandia National Laboratories

    Google Scholar 

  5. A. Plaza, The eight-tetrahedra longest-edge partition and Kuhn triangulations. Comp. and Math. Appli. 54, 427–433 (2007). https://doi.org/10.1016/j.camwa.2007.01.023

    Article  MathSciNet  Google Scholar 

  6. A. Plaza, G. F. Carey, Refinement of simplicial grids based on the skeleton. App. Numer. Math. 32 (2), 195–218 (2000). https://doi.org/10.1016/S0168-9274(99)00022-7

    Article  MathSciNet  Google Scholar 

  7. M. A. Padrón, A. Plaza, The 8T-LE partition applied to the obtuse triangulation of the 3D-cube. Submitted to Mathematics and Computer in Simulation

    Google Scholar 

  8. A. Plaza, M. A. Padrón, J. P. Suárez, Non-degeneracy study of the 8-tetrahedra longest-edge partition. App. Numer. Math. 55 (4), 458–472 (2005). https://doi.org/10.1016/j.apnum.2004.12.003

    Article  MathSciNet  Google Scholar 

  9. A. Plaza, M. A. Padrón, J. P. Suárez, S. Falcón, The 8-tetrahedra longest-edge partition of right-type tetrahedra. Finit. Elemen. in Analy. and Desi. 41 (3), 253–265 (2004). https://doi.org/10.1016/j.finel.2004.04.005

    Article  MathSciNet  Google Scholar 

  10. A. Plaza, M. C. Rivara, Average adjacencies for tetrahedral skeleton-regular partitions. J. Comp. Appl. Math. 177 (1), 141–158 (2005). https://doi.org/10.1016/j.cam.2004.09.013

    Article  MathSciNet  Google Scholar 

  11. M. A. Padrón, J. P. Suárez, A. Plaza, A comparative study between some bisection based partitions in 3D. App. Numer. Math.55 (4), 357–367 (2005). https://doi.org/10.1016/j.apnum.2005.04.035

    Article  MathSciNet  Google Scholar 

  12. M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Meth. in Eng. 20 (4), 745–756 (1987). https://doi.org/10.1002/nme.1620200412

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Project Puente Cabildo 2018-01 of the Cabildo de Gran Canaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Padrón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Padrón, M.A., Plaza, Á. (2021). The 8T-LE Partition Applied to the Barycentric Division of a 3-D Cube. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_74

Download citation

Publish with us

Policies and ethics