Abstract
The barycentric partition of a 3D-cube into tetrahedra is carried out by adding a new node to the body at the centroid point and then, new nodes are progressively added to the centroids of faces and edges. This procedure generates three types of tetrahedra in every single step called, Sommerville tetrahedron number 3 (ST3), isosceles trirectangular tetrahedron and regular right-type tetrahedron. We are interested in studying the number of similarity classes generated when the 8T-LE partition is applied to these tetrahedra.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
G. Albertelli, R. A. Crawfis, Efficient subdivision of finite-element datasets into consistent tetrahedra. In R. Yagel and H. Hagen, editors, Proc. IEEE Visualization, 213–220, Phonenix, AZ, November 1997
J. Brandts, S. Korotov, On nonobtuse simplicial partitions. SIAM Review. 51 (2), 317–335 (2009)
H. Carr, T. Möller, J. Snoeyink, Simplicial subdivision and sampling artifacts. Proc. IEEE Visualization, 99–106, 2001
J. Dompierre, P. Labbé, M.-G. Vallet, R. Camarero, How to subdivide pyramids, prysms and hexahedra into tetrahedra. In 8th International Meshing Roundtable, Lake Tahoe, CA, October 1999. Sandia National Laboratories
A. Plaza, The eight-tetrahedra longest-edge partition and Kuhn triangulations. Comp. and Math. Appli. 54, 427–433 (2007). https://doi.org/10.1016/j.camwa.2007.01.023
A. Plaza, G. F. Carey, Refinement of simplicial grids based on the skeleton. App. Numer. Math. 32 (2), 195–218 (2000). https://doi.org/10.1016/S0168-9274(99)00022-7
M. A. Padrón, A. Plaza, The 8T-LE partition applied to the obtuse triangulation of the 3D-cube. Submitted to Mathematics and Computer in Simulation
A. Plaza, M. A. Padrón, J. P. Suárez, Non-degeneracy study of the 8-tetrahedra longest-edge partition. App. Numer. Math. 55 (4), 458–472 (2005). https://doi.org/10.1016/j.apnum.2004.12.003
A. Plaza, M. A. Padrón, J. P. Suárez, S. Falcón, The 8-tetrahedra longest-edge partition of right-type tetrahedra. Finit. Elemen. in Analy. and Desi. 41 (3), 253–265 (2004). https://doi.org/10.1016/j.finel.2004.04.005
A. Plaza, M. C. Rivara, Average adjacencies for tetrahedral skeleton-regular partitions. J. Comp. Appl. Math. 177 (1), 141–158 (2005). https://doi.org/10.1016/j.cam.2004.09.013
M. A. Padrón, J. P. Suárez, A. Plaza, A comparative study between some bisection based partitions in 3D. App. Numer. Math.55 (4), 357–367 (2005). https://doi.org/10.1016/j.apnum.2005.04.035
M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Meth. in Eng. 20 (4), 745–756 (1987). https://doi.org/10.1002/nme.1620200412
Acknowledgements
This work has been partially supported by Project Puente Cabildo 2018-01 of the Cabildo de Gran Canaria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Padrón, M.A., Plaza, Á. (2021). The 8T-LE Partition Applied to the Barycentric Division of a 3-D Cube. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_74
Download citation
DOI: https://doi.org/10.1007/978-3-030-55874-1_74
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55873-4
Online ISBN: 978-3-030-55874-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)